Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Phương Linh
Xem chi tiết
Trên con đường thành côn...
4 tháng 8 2021 lúc 21:10

undefined

Nguyễn Hoàng Dương
11 tháng 4 2024 lúc 21:42

kẻ lười biếng nạp card, đi ô tô

Nguyễn Linh Chi
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 12 2020 lúc 23:50

\(Q=x^2+\dfrac{4}{x}+\dfrac{4}{x}\ge3\sqrt[3]{\dfrac{16x^2}{x^2}}=3\sqrt[3]{16}\)

Dấu "=" xảy ra khi \(x=\sqrt[3]{4}\)

Sonyeondan Bangtan
Xem chi tiết
Kuramajiva
12 tháng 1 2021 lúc 23:33

a) \(f(x)\geq 2\sqrt{x^2.\frac{16}{x^2}}=2\sqrt{16}=2.4=8\)

Dấu "=" xảy ra khi và chỉ khi \(x^2=\frac{16}{x^2}\)

                                   \(\Leftrightarrow x=2\)

Vậy GTNN của \(f(x)\) bằng 8 khi x=2

b) \(f(x)=\frac{1-x+x}{x}+\frac{2-2x+2x}{1-x}\)

\(f(x)=\frac{1-x}{x}+\frac{2x}{1-x}+3\)

\(f(x)\geq 2\sqrt{\frac{1-x}{x}.\frac{2x}{1-x}}+3=2\sqrt{2}+3\)

Dấu "=" xảy ra khi và chỉ khi \(\frac{1-x}{x}=\frac{2x}{1-x}\)

                                             \(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTNN của \(f(x)\) bằng \(2\sqrt{2} +3\) khi \(x=\frac{1}{2}\)

Nguyễn An
Xem chi tiết
Hàn Nhật Hạ
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 4 2021 lúc 22:19

1.

\(f\left(x\right)=\dfrac{4}{x}+\dfrac{x-1+1}{1-x}=\dfrac{2^2}{x}+\dfrac{1}{1-x}-1\ge\dfrac{\left(2+1\right)^2}{x+1-x}-1=8\)

\(f\left(x\right)_{min}=8\) khi \(x=\dfrac{2}{3}\)

2.

\(f\left(x\right)=\dfrac{1}{x}+\dfrac{1}{1-x}\ge\dfrac{4}{x+1-x}=4\)

\(f\left(x\right)_{min}=4\) khi \(x=\dfrac{1}{2}\)

Nguyễn Viết Thông
11 tháng 1 2022 lúc 22:04

x=23x=23

2.

x=12

Nguyễn Đom Đóm
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 12 2020 lúc 21:59

\(S=\dfrac{2018x^2-2.2018x+2018^2}{2018x^2}=\dfrac{2017x^2+x^2-2.2018x+2018^2}{2018x^2}=\dfrac{2017}{2018}+\dfrac{\left(x-2018\right)^2}{x^2}\ge\dfrac{2017}{2018}\)

\(S_{min}=\dfrac{2017}{2018}\) khi \(x=2018\)

Big City Boy
Xem chi tiết
Trương Huy Hoàng
24 tháng 1 2021 lúc 21:31

Ta có: x \(\le\) \(\dfrac{1}{4}\)

\(\Rightarrow\) \(\dfrac{1}{x}\ge4\)

Lại có: B = \(\dfrac{x+1}{x}=1+\dfrac{1}{x}\)

\(\Rightarrow\) 1 + \(\dfrac{1}{x}\) \(\ge\) 1 + 4 = 5

hay B \(\ge\) 5

Dấu "=" xảy ra khi và chỉ khi x = \(\dfrac{1}{4}\)

Chúc bn học tốt!

duy khang nguyễn
Xem chi tiết
Nguyễn Quang Định
19 tháng 3 2017 lúc 8:53

\(A=\dfrac{\left(x+16\right)\left(x+9\right)}{x}\)

\(A=\dfrac{x^2+25x+144}{x}\)

Vì x>0 nên ta được quyền rút gọn

\(A=x+25+\dfrac{144}{x}\)

Vì x>0 nên \(\dfrac{144}{x}>0\)

Áp dụng BĐT AM-GM cho \(x+\dfrac{144}{x}\left(x>0\right)\), ta có:

\(\dfrac{x+\dfrac{144}{x}}{2}\ge\sqrt{\dfrac{x.144}{x}}\)

\(x+\dfrac{144}{x}\ge2.\sqrt{144}\)

\(x+\dfrac{144}{x}\ge24\)

\(A=x+\dfrac{144}{x}+25\ge24+25\)

Vậy MinA =49 khi \(x=\dfrac{144}{x}\)

\(x=\dfrac{144}{x}\)

\(x^2=144\)

\(x=\pm12\)

Chọn nghiệm x=12 ( x>0)

Vậy: MinA=49 khi x=12

Scarlett Ohara
Xem chi tiết
Akai Haruma
30 tháng 10 2021 lúc 13:57

Lời giải:

$A=(x-y)+\frac{4}{x-y}+y+\frac{1}{y}$

Áp dụng BĐT Cô-si:

$(x-y)+\frac{4}{x-y}\geq 2\sqrt{(x-y).\frac{4}{x-y}}=4$
$y+\frac{1}{y}\geq 2$

$\Rightarrow A\geq 4+2=6$

Vậy $A_{\min}=6$ khi $(x,y)=(3,1)$