Cho x,y,z thỏa mãn \(x^2+y^2+z^2-2x-4y+6z\le2\). Tìm GTNN và GTLN của
\(P=x+2y-2z\)
cho x,y,z dương thỏa mãn \(5\left(x+y+z\right)^2\ge14\left(x^2+y^2+z^2\right)\). tìm GTNN và GTLN của \(P=\dfrac{2x+z}{x+2z}\)
Bạn tham khảo:
Cho ba số thực dương x;y;z thoả mãn \(5\left(x y z\right)^2\ge14\left(x^2 y^2 z^2\right)\) Tìm giá trị lớn nhất nhỏ nh... - Hoc24
\(A=x-2y+3z\left(x,y,z>0\right)\)
\(\left\{{}\begin{matrix}2x+4x+3z=8\left(1\right)\\3x+y-3z=2\left(2\right)\end{matrix}\right.\)
(1) <=> \(5x+5y=10\) <=> x+ y = 2
=> y = 2-x
Từ (1) => \(2x+4\left(2-x\right)+3z=8\)
=> -2x +3z =0
=> \(x=\dfrac{3}{2}z\) => \(z=\dfrac{2}{3}x\) thay vào A
=> \(A=x-2\left(2-x\right)+3.\dfrac{2}{3}x=5x-4\ge-4\)
Vậy Amin = -4.
Cho x,y,z thỏa mãn x^2+y^2+z^2 ≤ 2x+4y+6z-13
CMR 8 ≤ x+2y+2z ≤ 14
Mọi người giúp em với ạ
điều kiện ban đầu <=> (x-1)2+(y-2)2+(z-3)2 \(\le1\)
áp dụng bdt sau (ax+ by+ cz)2\(\le\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)(bunhiacopxky với 3 số)
[ x-1 + 2(y-2) + 2(z-3)]2 \(\le\left(1^2+2^2+2^2\right)\left[\left(x-1\right)^2+\left(y-2\right)^2+\left(z-2\right)^2\right]\le9.1=9\)
=>\(-3\le\) x-1 +2(y-2) +2(z-3) \(\le3\) <=> 8\(\le x+2y+2z\le14\)
Cho x,y,z >0 thỏa mãn x+y+z = 2. Tìm GTLN của biểu thức
\(P=\sqrt{2x+yz}+\sqrt{2y+xz}+\sqrt{2z+xy}\)
\(\sqrt{2x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\le\dfrac{1}{2}\left(x+y+x+z\right)=\dfrac{1}{2}\left(2x+y+z\right)\)
Tương tự: \(\sqrt{2y+xz}\le\dfrac{1}{2}\left(x+2y+z\right)\) ; \(\sqrt{2z+xy}\le\dfrac{1}{2}\left(x+y+2z\right)\)
Cộng vế:
\(P\le\dfrac{1}{2}\left(4x+4y+4z\right)=4\)
\(P_{max}=4\) khi \(x=y=z=\dfrac{2}{3}\)
P = \(1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)
\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)
\(=\sqrt{3.\left(4+xy+yz+zx\right)}\)
Đã biết x2 + y2 + z2 \(\ge\)xy + yz + zx
=> xy + yz + zx \(\le\dfrac{\left(x+y+z\right)^2}{3}\)
Khi đó \(P\le\sqrt{3\left(4+xy+yz+zx\right)}\le\sqrt{3\left[4+\dfrac{\left(x+y+z\right)^2}{3}\right]}\)
= 4
Dấu "=" xảy ra <=> x = 2/3
Cho x,y,z >0 thỏa mãn \(x+y+z=2\) . Tìm GTLN của biểu thức \(P=\sqrt{2x+yz}+\sqrt{2y+xz}+\sqrt{2z+xy}\)
\(\sqrt{2x+yz}=\sqrt{\left(x+y+z\right)x+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\le\dfrac{x+2y+z}{2}\\ \Leftrightarrow P=\sum\sqrt{2x+yz}\le\dfrac{x+2y+z+2x+y+z+x+y+2z}{2}=\dfrac{4\left(x+y+z\right)}{2}=2\cdot2=4\)
Dấu \("="\Leftrightarrow x=y=z=\dfrac{2}{3}\)
P = \(1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)
\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)(Bunyacovski)
\(=\sqrt{3\left[4+\left(xy+yz+zx\right)\right]}\)
\(\le\sqrt{3.\left[4+\dfrac{\left(x+y+z\right)^2}{3}\right]}=\sqrt{3.\left(4+\dfrac{4}{3}\right)}\) = 4
Dấu "=" xảy ra <=> x = y = z = 2/3
. Với x,y,z là các số thực dương thỏa mãn\(5\left(x+y+z\right)^2\ge14\left(x^2+y^2+z^2\right)\).Tìm GTNN và GTLN của
Q=\(\dfrac{2x+z}{2z+x}\)
Cho ba số thực dương x;y;z thoả mãn \(5\left(x+y+z\right)^2\ge14\left(x^2+y^2+z^2\right)\) Tìm giá trị lớn nhất nhỏ nh... - Hoc24
Cho x y thuộc Z thỏa mãn
`x^2`+ `2xy` + `7x` + `7y` + `2y^2` + `10` = `0`
tìm gtnn và gtln của S= 2x+2y+2023
cho x,y,z thỏa mãn xyz=1. tìm GTNN của \(T=\dfrac{xy}{z^2x+z^2y}+\dfrac{yz}{x^2y+x^2z}+\dfrac{zx}{y^2x+y^2z}\)
\(T=\dfrac{\left(xy\right)^2}{zx+zy}+\dfrac{\left(yz\right)^2}{xy+xz}+\dfrac{\left(zx\right)^2}{yx+yz}\ge\dfrac{xy+yz+zx}{2}\ge\dfrac{3}{2}\sqrt[3]{\left(xyz\right)^2}=\dfrac{3}{2}\)
Cho x,y,z thỏa mãn x+y+2z=3.Tìm GTNN của biểu thức Q=2x2 - 2y2 - z2