Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quỳnh Anh
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 1 2021 lúc 0:15

\(\left(3^x;3^y;3^z\right)=\left(a;b;c\right)\Rightarrow\left\{{}\begin{matrix}a;b;c>0\\ab+bc+ca=abc\end{matrix}\right.\)

BĐT cần chứng minh trở thành:

\(\dfrac{a^2}{a+bc}+\dfrac{b^2}{b+ca}+\dfrac{c^2}{c+ab}\ge\dfrac{a+b+c}{4}\)

Thật vậy, ta có:

\(VT=\dfrac{a^3}{a^2+abc}+\dfrac{b^3}{b^2+abc}+\dfrac{c^3}{c^2+abc}\)

\(VT=\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{c^3}{\left(a+c\right)\left(b+c\right)}\)

Áp dụng AM-GM:

\(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\ge\dfrac{3a}{4}\)

Làm tương tự với 2 số hạng còn lại, cộng vế với vế rồi rút gọn, ta sẽ có đpcm

Hải Băng
Xem chi tiết
Sakura kun sky fc11
16 tháng 9 2017 lúc 11:01

mình chẳng hiểu gì cả X_X

Lê Bảo Anh Thư
16 tháng 9 2017 lúc 11:31

Chả hiểu đây là dạng toán gì

Thanh Tuyền
Xem chi tiết
Linh Thuy
Xem chi tiết
𝓓𝓾𝔂 𝓐𝓷𝓱
13 tháng 3 2021 lúc 7:27

\(C=5x^3y^2-4x^3y^2+3x^2y^3+\dfrac{1}{2}x^2y^3+\dfrac{1}{3}x^4y^5-3x^4y^5-\dfrac{1}{7}\)

    \(=x^3y^2+\dfrac{7}{2}x^2y^3-\dfrac{8}{3}x^4y^5-\dfrac{1}{7}\)

BTVCONGANH
22 tháng 8 2023 lúc 17:37

gg

 

cát tường
Xem chi tiết
Mai
Xem chi tiết
Vy trần
Xem chi tiết
Nguyễn Hoàng Minh
23 tháng 9 2021 lúc 8:45

\(a,\Leftrightarrow y^3-6y^2+12y-8-y^3+27+6y^2+12y+6=49\\ \Leftrightarrow24y=24\Leftrightarrow y=1\\ b,\Leftrightarrow y^3+9y^2+27y+27-y^3-3y^2-3y-1=56\\ \Leftrightarrow6y^2+24y-30=0\\ \Leftrightarrow y^2+4y-5=0\\ \Leftrightarrow\left(y-1\right)\left(y+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}y=1\\y=-5\end{matrix}\right.\)

Lấp La Lấp Lánh
23 tháng 9 2021 lúc 8:46

a) \(\Leftrightarrow y^3-6y^2+12y-8-y^3+27+6y^2+12y+6=49\)

\(\Leftrightarrow24y=24\Leftrightarrow y=1\)

b) \(\Leftrightarrow y^3+9y^2+27y+27-y^3-3y^2-3y-1=56\)

\(\Leftrightarrow6y^2+24y-30=0\)

\(\Leftrightarrow6\left(y-1\right)\left(y+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-5\end{matrix}\right.\)

Tử Nguyệt Hàn
23 tháng 9 2021 lúc 8:50

a) (y-2)3-(y-3)(y2+3y+9)+6(y+1)2=49
    \(y^3-6y^2+12y-8-y^3+27+6\left(y^2+2y+1\right)=49\)
    \(-6y^2+12y+25+6y^2+12y+6=49\)
     \(24y+31=49\)
     24y=18
         y=0,75

kha mai
Xem chi tiết
Hoàng Việt Hà
Xem chi tiết
Nguyễn Trọng Chiến
7 tháng 3 2021 lúc 15:51

 ĐKXĐ: \(x,y\ne0\)\(\left\{{}\begin{matrix}x+y+\dfrac{1}{x}+\dfrac{1}{y}=4\\x^3+y^3+\dfrac{1}{x^3}+\dfrac{1}{y^3}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=4\\\left(x+\dfrac{1}{x}\right)^3+\left(y+\dfrac{1}{y}\right)^3-3\left(x+\dfrac{1}{x}\right)-3\left(y+\dfrac{1}{y}\right)=4\end{matrix}\right.\)

Đặt \(x+\dfrac{1}{x}=a;y+\dfrac{1}{y}=b\left(a,b\ne0\right)\)

\(\Rightarrow hpt\) trở thành:

\(\left\{{}\begin{matrix}a+b=4\left(1\right)\\a^3+b^3-3a-3b=4\left(2\right)\end{matrix}\right.\) 

Từ (1) \(\Rightarrow a=4-b\) Thay vào (2) ta được:

\(\left(4-b\right)^3+b^3-3\left(4-b\right)-3b=4\Leftrightarrow64-48b+12b^2-b^3+b^3-12+3b-3b-4=0\Leftrightarrow12b^2-48b+60=0\Leftrightarrow b^2-4b+5=0\Leftrightarrow b^2-4b+4+1=0\Leftrightarrow\left(b-2\right)^2+1=0\) Vô lí \(\Rightarrow\) ko có a,b \(\Rightarrow\) ko có x,y

Vậy hpt vô nghiệm

kimjoen
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 7 2021 lúc 22:42

Bài 1: 

c) \(\dfrac{1}{y}\sqrt{19y}=\sqrt{19y\cdot\dfrac{1}{y^2}}=\sqrt{\dfrac{19}{y}}\)

d) \(\dfrac{1}{3y}\cdot\sqrt{\dfrac{27}{y^2}}\cdot y=\sqrt{\dfrac{1}{9}\cdot\dfrac{27}{y^2}}=\sqrt{\dfrac{3}{y^2}}\)

Nguyễn Lê Phước Thịnh
7 tháng 7 2021 lúc 23:15

Bài 3: 

a) Ta có: \(\left(\dfrac{2}{\sqrt{3}-1}+\dfrac{3}{\sqrt{3}-2}+\dfrac{15}{3-\sqrt{3}}\right)\cdot\dfrac{1}{\sqrt{3}+5}\)

\(=\left(\dfrac{2\left(\sqrt{3}+1\right)}{2}-\dfrac{3\left(2+\sqrt{3}\right)}{1}+\dfrac{15\left(3+\sqrt{3}\right)}{6}\right)\cdot\dfrac{1}{\sqrt{3}+5}\)

\(=\left(\sqrt{3}+1-2-\sqrt{3}+\dfrac{5\left(3+\sqrt{3}\right)}{2}\right)\cdot\dfrac{1}{\sqrt{3}+5}\)

\(=\left(-1+\dfrac{5\left(3+\sqrt{3}\right)}{2}\right)\cdot\dfrac{1}{5+\sqrt{3}}\)

\(=\dfrac{-2+15+5\sqrt{3}}{2\left(5+\sqrt{3}\right)}\)

\(=\dfrac{13+5\sqrt{3}}{10+2\sqrt{3}}\)