Trục căn thức ở mẫu 1/2+ căn3 + 1/2- căn3
Trực căn thức ở mẫu : 5/(2 căn3)
\(\dfrac{5}{2\sqrt{3}}=\dfrac{5\sqrt{3}}{6}\)
`5/(2\sqrt3)`
`=(5\sqrt3)/(2\sqrt3.\sqrt3)`
`=(5\sqrt3)/(2.3)`
`=5/6\sqrt3`
Căn3(x) + căn3(2x-3) = căn3[12×(x-1)]
Căn3(x+1) +căn3(x-1) =căn3(5x)
Căn3(1+căn(x)) +căn3(1-căn(x)) =2
Căn3(x-1) +căn3(x-2) =căn3(2x-3)
Ai giúp mk đi mk sắp nát rồi
trục căn thức các biểu thức sau:
a 3/4+căn(9+4căn5)
b căn3/căn2+căn(5+2căn6)
c 3/căn5+căn7-căn2
d 1/2+căn5+2căn2+căn10
1) So sánh các căn sau
a) 2 căn3 - 5 và căn3 -4
b) 5 căn 5 - 2 căn3 và 6+4 căn5
c) 1 - căn3 và căn2 - căn6
d) căn3 - 3 căn2 và -4 căn3 + 5 căn2
e) 3 - 2 căn3 và 2 căn6 -5
\(\sqrt{3}-\frac{5}{2}>\sqrt{3}-4\text{ vì }-\frac{5}{2}>-4\)
\(\Rightarrow2.\left(\sqrt{3}-\frac{5}{2}\right)>\sqrt{3}-4\)
\(\Rightarrow2.\sqrt{3}-5>\sqrt{3}-4\)
b) vì \(\sqrt{5}-\sqrt{12}< 0\), ta có:
\(5\sqrt{5}-2\sqrt{3}=4\sqrt{5}+\sqrt{5}-\sqrt{12}< 4\sqrt{5}< 4\sqrt{5}+6\)
Vậy \(5\sqrt{5}-2\sqrt{3}< 6+4\sqrt{5}\)
c)\(\sqrt{2}-\sqrt{6}=\sqrt{2}.\left(\sqrt{1}-\sqrt{3}\right)>\left(1-\sqrt{3}\right)\)
Vậy \(\sqrt{2}-\sqrt{6}>1-\sqrt{3}\)
1/Đưa thừa số ra ngoài dấu căn: 3 căn8 - 5 căn 18 2/Đưa thừa số vào dấu căn So sánh: 7 căn3 và căn 141 3/ khử mẫu của biểu thức (bằng 2 cách) Căn 5 phần27 Căn 11 phần 64
Thực hiện phép tính
a. 5+2 căn5/căn5+căn2
b.Căn(2-căn3/2+căn3)
c.(2/căn3-1 + 3/căn3-2 + 15/3-căn3) x 1/căn3+5
d.(căn14-căn7/1-căn2 + căn15-căn5/1-căn3) : 1/căn7-căn5
Mình đang cần gấp
a: \(\dfrac{5+2\sqrt{5}}{\sqrt{5}+\sqrt{2}}=\dfrac{\left(5+2\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)}{3}=\dfrac{5\sqrt{5}-5\sqrt{2}+10-2\sqrt{10}}{3}\)
b: \(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}=\sqrt{\left(2-\sqrt{3}\right)^2}=2-\sqrt{3}\)
Rút gọn biểu thức:
căn (căn 3-căn)/ (căn 3+căn 2)+căn(căn3+căn 2)/ (căn 3-căn 2)
\(\sqrt{\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}}+\sqrt{\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}}\)
\(=\sqrt{\dfrac{\left(\sqrt{3}-\sqrt{2}\right)^2}{3-2}}+\sqrt{\dfrac{\left(\sqrt{3}+\sqrt{2}\right)^2}{3-2}}\)
\(=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)
\(=\sqrt{3}-\sqrt{2}+\sqrt{3}+\sqrt{2}=2\sqrt{3}\)
căn (1+căn3)^2 /4
\(\dfrac{\sqrt{\left(1+\sqrt{3}\right)^2}}{4}=\dfrac{1+\sqrt{3}}{4}\)
cho x=căn(2+căn(2+căn3))-căn(6-3.căn(2+căn3)). Tính giá trị của S=x4-16x