Chứng minh phân thức luôn có nghĩa
a) 5x+1
x2+2x+4
b) x2-4
-x2+4x-5
Chứng minh các phân thức sau luôn có nghĩa x 2 - 4 - x 2 + 4 x - 5
Chứng minh các phân thức sau luôn có nghĩa 5 x + 1 x 2 + 2 x + 4
Chứng minh các phân thức sau luôn có nghĩa x 2 + 2 x + 1 x 4 - 2 x 3 - 2 x 2 - 2 x + 4
Cho cặp phân thức x 2 − 1 x 2 − 3 x − 4 và x 2 − 2 x − 3 x 2 − x − 2 với x ≠ − 1 ; x ≠ 2 và x ≠ 4 .
a) Hai phân thức này có luôn bằng nhau hay không?
b) Tìm giá trị cụ thể của x để hai phân thức bằng nhau.
Phân tích các đa thức sau thành nhân tử:
a) x2 + 5x + 4
b) 3x2 + 4x - 7
c) x2 + 7x + 12
a) \(x^2+5x+4==x\left(x+1\right)+4\left(x+1\right)=\left(x+1\right)\left(x+4\right)\)
b) \(3x^2+4x-7=3x\left(x-1\right)+7\left(x-1\right)=\left(x-1\right)\left(3x+7\right)\)
c) \(x^2+7x+12=x\left(x+3\right)+4\left(x+3\right)=\left(x+3\right)\left(x+4\right)\)
a) x2+5x+4 = x(x+4)+(x+4) = (x+4)(x+1)
b) 3x2+4x-7 = 3x(x-1)+7(x-1) = (x-1)(3x+7)
c) x2+7x+12 = x(x+4)+3(x+4) = (x+3)(x+4)
bài 1 : phân tích đa thức sau thành nhân tử
a)x2 + 4x +4
b)4x2 - 4x + 1
c) 2x- 1 -x2
d) x2+ x +\(\dfrac{1}{4}\)
e)9 - x2
g)(x+5)2 - 4x2
h)(x+1)2 -(2x - 1 )2
i)x2y2 - 4xy +1
k)y2-(x2 - 2x +1 )
l)x3 + 6x2+12x +8
m) 8x3 - 12x2y + 6xy2 - y3
a: \(x^2+4x+4=x^2+2\cdot x\cdot2+2^2=\left(x+2\right)^2\)
b: \(4x^2-4x+1=\left(2x\right)^2-2\cdot2x\cdot1+1^2=\left(2x-1\right)^2\)
c: \(2x-1-x^2\)
\(=-\left(x^2-2x+1\right)=-\left(x-1\right)^2\)
d: \(x^2+x+\dfrac{1}{4}=x^2+2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=\left(x+\dfrac{1}{2}\right)^2\)
e: \(9-x^2=3^2-x^2=\left(3-x\right)\left(3+x\right)\)
g: \(\left(x+5\right)^2-4x^2=\left(x+5+2x\right)\left(x+5-2x\right)\)
\(=\left(5-x\right)\left(5+3x\right)\)
h: \(\left(x+1\right)^2-\left(2x-1\right)^2\)
\(=\left(x+1+2x-1\right)\left(x+1-2x+1\right)\)
\(=3x\left(-x+2\right)\)
i: \(=x^2y^2-4xy+4-3\)
\(=\left(xy-2\right)^2-3=\left(xy-2-\sqrt{3}\right)\left(xy-2+\sqrt{3}\right)\)
k: \(=y^2-\left(x-1\right)^2\)
\(=\left(y-x+1\right)\left(y+x-1\right)\)
l: \(=x^3+3\cdot x^2\cdot2+3\cdot x\cdot2^2+2^3=\left(x+2\right)^3\)
m: \(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot y+3\cdot2x\cdot y^2-y^3=\left(2x-y\right)^3\)
chứng tỏ các bất phương trình sau luôn nghiệm đungs với mọi x
x2 - 4x+5>0
chứng minh rằng -x2+4x-10/x2+1<0 với mọi x
tìm x để biểu thức x2-4x+5 đạt giá trị nhỏ nhất
tìm x để biểu thức -x2+4x+4 đạt giá trị lớn nhất
Ta có :
\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)
Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x
Chúc bạn học tốt ~
CMR các biểu thức sau luôn có giá trị âm với mọi x
a) -x2 - 2x - 8
b) -x2 - 5x - 11
c) -4x2 - 4x - 2
d) -9x2 + 6x - 7
Lời giải:
a. $-x^2-2x-8=-7-(x^2+2x+1)=-7-(x+1)^2$
Vì $(x+1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên
$-x^2-2x-8=-7-(x+1)^2\leq -7< 0$ với mọi $x\in\mathbb{R}$
Vậy biểu thức luôn nhận giá trị âm với mọi $x$
b.
$-x^2-5x-11=-11+2,5^2-(x^2+5x+2,5^2)< -11+3^2-(x+2,5)^2$
$=-2-(x+2,5)^2\leq -2< 0$ với mọi $x\in\mathbb{R}$ (đpcm)
c.
$-4x^2-4x-2=-1-(4x^2+4x+1)=-1-(2x+1)^2\leq -1< 0$ với mọi $x\in\mathbb{R}$ (đpcm)
d.
$-9x^2+6x-7=-6-(9x^2-6x+1)=-6-(3x-1)^2\leq -6< 0$ với mọi $x\in\mathbb{R}$ (đpcm)
Chứng minh biểu thức sau xác định với mọi giá trị của x:
A = x 2 − 4 x 2 + 1 x 2 + 4 x + 5 + 3 2 x .
Chứng minh các phân thức sau luôn có nghĩa x - y + 1 x 2 + y 2 - 2 x y + 2 x - 2 y + 5