Cho p, p + 20 và p + 40 là các số nguyên tố. Chứng minh rằng: p = 3.
1/ Cho P và P+14 là các số nguyên tố. Chứng minh rằng P+17 là hợp số
2/ Cho P và P+20, P+40 là các số nguyên tố. Chứng minh rằng P + 80 là số nguyên tố
3/ Tìm số nguyên tố P sao cho P+6 - P+12 ; P+18 ; P+24 là số nguyên tố
1) Ta có : P và P+14 là số nguyên tố thì P là số lẻ
nên P+17 là số chẵn suy ra P+17 là hợp số.
Cho p, p + 20 và p + 40 là các số nguyên tố. Chứng minh rằng: p = 3.
nếu p=2 thì p+20=22 ko là số NT
nếu p=3 thỏa mãn
nếu p>3
thì p chia cho 3 dư 1 hoặc 2
suy ra p+20 hoặc p+40 chia hết cho 3
mà 2 số này >3 nên là hợp số
=>loại
vậy p=3
1. Tìm số nguyên tố p , sao cho các số sau cũng là số nguyên tố :
a,p+2 và p+10
b,p+10 và p+20
2.Cho 3 số nguyên tố lớn hơn 3 , trong đó số sau lớn hơn số trước là d đơn vị . Chứng minh rằng d chia hết cho 6.
3.Cho p và p+4 là các số nguyên tố (p>3) . Chứng minh ằng p+8 là hợp số
4.Cho p và 8p-1 là các số nguyên tố . Chứng minh rằng 8p+1 là hợp số
Câu 1:
a: p=3 thì 3+2=5 và 3+10=13(nhận)
p=3k+1 thì p+2=3k+3(loại)
p=3k+2 thì p+10=3k+12(loại)
b: p=3 thì p+10=13 và p+20=23(nhận)
p=3k+1 thì p+20=3k+21(loại)
p=3k+2 thì p+10=3k+12(loại)
2.
p là số nguyên tố > 3 => p lẻ p + d là số nguyên tố => p + d lẻ mà p lẻ => d chẵn => d chia hết cho 2 +) Xét p = 3k + 1 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + 2d = 3k + 1 + 2. (3m +1) = 3k + 6m + 3 chia hết cho 3 => không là số nguyên tố Nếu d chia cho3 dư 2 => d = 3m + 2 => p +d = 3k + 1 + 3m + 2 = 3k + 3m + 3 => p + d không là số nguyên tố => d chia hết cho 3 +) Xét p = 3k + 2 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + d = 3k + 2 + 3m + 1 = 3k + 3m + 3 => p + d không là số ngt Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + 2d = 3k + 6m + 6 => p + 2d không là số ngt => d chia hết cho 3 Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6
với p=2ta có
p+2=2+2=4(loại)
với p=3ta có
p+10=3+10=13
p+20=3+20=23
suy ra p=3 là hợp lí
với p>3 thì p có dạng là 3k=1 và 3k=2
với p=3k+1 ta có
p+20=3k+1+20=3k+21(loại)
với p=3k=2 ta có
p+10=3k+2+10=12(loại)
Vập p = 3
Nhớ tick cho mình nhé!
Cho P,P+20,P+40 là số nguyên tố. Chứng minh rằng: P+80 là số nguyên tố
p là số nguyên tố => p > 1
p=2 => p+20 =22 => mâu thuẫn đề bài
p=3 => p+20=23 ; p+40=43 dều là số nguyên tố => p + 80 = 83 cũng là số nguyên tố
p> 3 => p có dạng 3k + 1 hoặc 3k + 2 ( p khác 3k vì 3k chia hết cho 3 không nguyên tố )
với p = 3k +1 => p + 20 = 3k + 21 = 3 (k +7) chia hết cho 3 mâu thuẫn đề bài
với p = 3k +2 => p + 40 = 3k + 42 = 3(k + 14) chia hết cho 3 mâu thuẫn đề bài
TỪ đó ta có p ; p+20 ; p+40 nguyên tố khi và chi khi p=3 lúc đó p+80 là số nguyên tố
P là số nguyên tố => P>1
xét P là số chẵn :
=> P = 2 mà 2+20=22 là hợp số
=> Ko thỏa mãn
xét P là số lẻ :
TH1: P=3 thì P+20=3 ; P+40=43
=> Thỏa mãn
TH2: P>3 thì P thuộc 1 trong 2 dạng:
3k+1 và 3k+2 (k thuộc N)
Nếu P= 3k+1 thì : P+20=(3k+1)+20=3k+21=3(k+7)
Vì số nguyên tố có và chỉ có tích là 1 và chính nó Mà 3>1;(k+7)>hoặc=7 và >1 nên 3(k+7) là hợp số
=> Ko thỏa mãn
P= 3k+2 thì : P+40=(3k+2)+40=3k+42=3(k+14) Vì số nguyên tố có và chỉ có tích là 1 và chính nó
Mà 3>1;(k+14)>hoặc=14 và >1 nên 3(k+14) là hợp số
=> Ko thỏa mãn
=> P=3
Mà 3+80=83;83 là một số nguyên tố
=>P+80 là số nguyên tố
Cho p; p + 20; p + 40 là các số nguyên tố. Chứng tỏ rằng p + 80 cũng là số nguyên tố.
Xét các trường hợp:
-Nếu p = 2, khi đó p + 20 = 22 không phải số nguyên tố, loại
-Nếu p = 3 thì p + 20 = 23 ; p + 40 = 43 ; p + 80 = 83 đều là các số nguyên tố.
-Nếu p > 3 thì p có dạng 3k + 1 hoặc 3k + 2
+) Với p = 3k + 1 thì p + 20 = (3k + 1) + 20 = 3k + 21 = 3k + 3.7 = 3.(k + 7), số này lớn hơn 3 mà chia hết cho 3 nên không phải số nguyên tố, loại
+) Với p = 3k + 2 thì p + 40 = (3k + 2) + 40 = 3k + 42 = 3k + 3.14 = 3.(k + 14), số này lớn hơn 3 mà chia hết cho 3 nên không phải số nguyên tố, loại.
Vậy suy ra điều phải chứng minh với p = 3
1. Cho p và 2p + 1 là các số nguyên tố (p>3). Chứng minh rằng 4p + 1 là hợp số.
2. Cho p và 10p + 1 là các số nguyên tố (p>3). Chứng minh rằng 5p + 1 là hợp số.
3. Cho p và 8p2 - 1 là các số nguyên tố (p>3. Chứng minh rằng 8p2 + 1 là hợp số.
4. Ta biết rằng có 25 số nguyên tố nhỏ hơn 100. tổng của 25 số nguyên tố đó là số chẵn hay số lẻ. Vì sao?
5. Tổng của 3 số nguyên tố bằng 1012. Tìm số nguyên tố nhỏ nhất.
cho P là số nguyên tố lớn hơn 3 và p + 4 Cũng là số nguyên tố Chứng minh rằng p + 20 21 chia hết cho 6
Cho m và m+4 là các số nguyên tố. Chứng minh rằng m+20 là hợp số.