Cho tam giác ABC vuông tại A. Gọi M, N lần lượt là hai điểm trên AB và AC sao cho \(AM=\frac{1}{3}AB\) và \(AN=\frac{1}{3}AC\)
Biết độ dài \(BN=\sin\alpha\), \(CM=\cos\alpha\) với \(0^o<\alpha<90^o\). Tính cạnh huyền BC.
Cho tam giác ABC vuông tại A . Gọi M, N lần lượt là hai điểm trên cạnh AB và AC sao cho AM = \(\dfrac{1}{3}\) AB và \(AN = \dfrac{1}{3} AC\) . Biết độ dài BN = sin\(\alpha\) , \(CM = cos\alpha\) với \(0^0 <\alpha <90^0\) . Tính cạnh huyền BC
Đặt AM = a ; AN = b thì AB = 3a ; AC = 3b
Áp dụng định lý Py-ta-go vào các tam giác vuông ABN và ACM , ta có :
\(AB^2+AN^2 = BN^2 ; AM^2 + AC^2 = CM^2\)
\(\Rightarrow\) \(9a^2 +b^2 = sin^2\alpha ; a^2 +9b^2 = cos^2\alpha\)
Do đó : \(10(a^2+b^2) = sin^2\alpha + cos^2\alpha = 1\)
\(a^2+b^2 = \dfrac{1}{10}\)
Ta có : \(BC^2 = (3a)^2 + (3b)^2 \)
\(BC^2 = 9(a^2+b^2) \)
\(BC^2 = \dfrac{9}{10}\)
\(\Leftrightarrow\) \(BC= \sqrt{\dfrac{9}{10}}\)
\(\Rightarrow\) \(BC = \dfrac{3}{10} \sqrt{10}\)
Cho \(\Delta ABC\)vuông tại A, gọi M , N lần lượt là 2 điểm trên cạnh AB và AC sao cho AM = \(\frac{1}{3}AB\) và AN = \(\frac{1}{3}AC\), biết BN = \(\sin\alpha\), CM = \(\cos\alpha\)( 0 < \(\alpha\)< 90 ). Tính cạnh huyền BC .( Thầy mình gợi ý kết quả ra là \(\frac{3}{10}\sqrt{10}\))
Các bạn tìm giúp mình cách tính nha !
bài này dùng Py-ta-go khá nhìu nhé, a tự hiểu -,-
\(1=\sin^2\alpha+\cos^2\alpha=BN^2+CM^2=AB^2+AC^2+AN^2+AM^2=BC^2+AN^2+AM^2\)
\(=BC^2+\frac{1}{9}\left(AB^2+AC^2\right)=BC^2+\frac{1}{9}BC^2=\frac{10}{9}BC^2\)\(\Rightarrow\)\(BC=\sqrt{\frac{9}{10}}=\frac{3\sqrt{10}}{10}\)
Bài 1. cho tam giác ABC nhọn biết: AB=c, BC=a, AC=b
CMR: a) \(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{sinC}\)
b) \(a^2=b^2+c^2-2bc.\cos A\)
c) \(c=b.\cos A+a.\cos B\)
Bài 2. Cho tam giác ABC vuông tại A, gọi M, N lần lượt thuộc AB, AC sao cho AB=3AM; AC=3AN. Biết \(BN=\sin\alpha,CM=\cos\alpha\left(0^0< \alpha< 90^0\right)\)
CMR: \(\frac{3\sqrt{10}}{10}\)
Ai giúp mk ikk
1) a) Từ C dựng đường cao CF
Ta có: \(\sin A=\frac{CF}{b};\sin B=\frac{CF}{a}\)\(\Rightarrow\)\(\frac{\sin A}{\sin B}=\frac{\frac{CF}{b}}{\frac{CF}{a}}=\frac{a}{b}\)\(\Leftrightarrow\)\(\frac{a}{\sin A}=\frac{b}{\sin B}\) (1)
Từ A dựng đường cao AH
Có: \(\sin B=\frac{AH}{c};\sin C=\frac{AH}{b}\)\(\Rightarrow\)\(\frac{\sin B}{\sin C}=\frac{\frac{AH}{c}}{\frac{AH}{b}}=\frac{b}{c}\)\(\Leftrightarrow\)\(\frac{b}{\sin B}=\frac{c}{\sin C}\) (2)
(1), (2) => đpcm
b) từ a) ta có: \(\hept{\begin{cases}\sin A=\frac{CF}{b}\\\cos A=\frac{AF}{b}\end{cases}\Leftrightarrow\hept{\begin{cases}CF=b.\sin A\\AF=b.\cos A\end{cases}}}\)
Có: \(BF=c-AF=c-b.\cos A\)
Py-ta-go:
\(a^2=BF^2+CF^2=\left(c-b.\cos A\right)^2+\left(b.\sin A\right)^2=c^2+b^2.\cos^2A+b^2.\sin^2A-2bc.\cos A\)
\(=b^2\left(\sin^2A+\cos^2A\right)+c^2-2bc.\cos A=b^2+c^2-2bc.\cos A\) (đpcm)
c) Có: \(\hept{\begin{cases}\cos A=\frac{AF}{b}\\\cos B=\frac{BF}{a}\end{cases}\Rightarrow b.\cos A+a.\cos B=b.\frac{AF}{b}+a.\frac{BF}{a}=AF+BF=c}\)
bài 2 mk có làm r bn ib mk gửi link nhé
1.Đơn giản bt : \(B=\sin\alpha-\sin\alpha\cdot\cos^2\alpha\)
2. Cho \(\tan\alpha=3\). Chứng minh \(\frac{\sin^3\alpha-\cos^3\alpha}{\sin^3\alpha+\cos^3\alpha}=\frac{13}{14}\)
3. Cho tam giác ABC vuông tại A (AB < AC), AH vuông góc với BC
a) Cm \(\frac{AB^2}{AC^2}=\frac{BH}{CH}\)
b) Từ B vẻ đường thẳng vuông góc với trung tuyến AM cắt AH tại D cắt AM tại E, cắt AC tại F. Cm D là trung điểm của BF và BE.BF=BH.BC
c) Cho AB =120cm, AC=160cm. Tính DE, AF
2/ \(\frac{sin^3a-cos^3a}{sin^3a+cos^3a}=\frac{tan^3a-1}{tan^3a+1}=\frac{3^3-1}{3^3+1}=\frac{13}{14}\) (chia tử mẫu cho cos3a)
1. Cho tam giác ABC vuông tại A. Từ M trong tam giác vẽ IM vuông góc BC, JM vuông góc CA, KM vuông góc AB. Xác định M sao cho MI^2+MJ^2+MK^2 đạt GTNN
2. tam giác ABC vuông tại A. Trên cạnh AB, BC, CA lần lượt lấy K, L, M sao cho tam giác KLM vuông cân tại C. Xác định vị trí K, L, M để diện tích tam giác KML đạt GTNN
3. Cho tam giác ABC vuông tại A. M, N là 2 điểm lần lượt trên AB và AC sao cho AM=1/3AB và AN=1/3AC. biết độ dài BN =sin a. CM: cos a với a<90 độ....
cho tam giác abc trêm ab lấy điểm m trên cạch ac lấy điểm n sao cho\(\frac{am}{ab}=\frac{an}{ac}=\frac{1}{3}\) gọi o là giao của bn và cm h,l lần lượt là chân đường vuông góc kẻ từ a,c xuống bn
cmr cl=2ah
cmr Sboc=Sboa
kẻ ce vuông góc với ao ,bd vuông góc với ao cm bd=ce
Cho tam giác ABC có AB=AC. Trên AB, AC lấy lần lượt hai điểm M và N sao cho AM= AN. Gọi O là giao điểm của BN và CM. Tia AO là tia phân giác của góc BAC. Chứng minh AO vuông góc với BC
Cho tam giác ABC, trên cạnh AB lấy điểm M sao cho AM=\(\frac{1}{3}\)AB, trên cạnh AC lấy điểm N sao cho AN=\(\frac{1}{3}\)AC. Gọi O là giao điểm của BN và CM
a) CM: diện tích tam giác BOC = 2 lần diện tích tam giác BOA
b)Từ diểm C và B hạ BD vuông góc OA. CM:BD=CE
c)Giả sử diện tích tam giác ABC= a (đơn vị diện tích). Tính diện tích AMON
B1: cho tam giác ABC vuông tại A (AB<AC), đường cao AH, M là trung điểm của BC. biết BH=7,2 cm, HC= 12,8cm/ Đường vuông góc với BC tại M cắt AC ở D.
a, CMR \(AC.CD=\frac{BC^2}{2}\)
b, Tính diện tích ABC và diện tích DMC
c, Gọi K là hình chiếu của M trên AC. tính diện tích KDM
B2: cho tam giác ABC cân tại A, đường cao thuộc cạnh bên bằng h, góc ở đáy bằng\(\alpha\)
CMR: \(SABC=\frac{h^2}{4\sin\alpha.\cos\alpha}\)