cho ΔABC cân tại A (\(\widehat{A}< 90^o\)), vẽ BD⊥AC và CE⊥AB. Gọi H là giao điểm của BD và CE
a) CM: AH là đường trung trực của ED
b) Trên tia đối của tia BD lấy K sao cho DK = DB. CM: \(\widehat{ECK}=\widehat{DKC}\)
Cho tam giác cân tại A( góc A<90 độ), vẽ BD vuông góc AC, CE vuông góc AB. Gọi H là giao điểm của BD và CE. Chứng minh:
a)AB//HK. b)Tam giác AKI cân.
c)AH là đường trung trực của ED. d)Trên tia đối của tia DB lấy điểm K sao cho DK=DB. Chứng minh góc ECB=DKC.
nhầm tiếp, phải là;
a) Tam giác ABD=ACE.
xin lỗi lần 2
a)Xét △ABD và △ACE:
góc ADB = góc AEC = 90o (BD vuông góc AC, CE vuông góc AB)
AB = AC (ΔABC cân tại A)
A là góc chung
Vậy △ABD = △ACE (ch.gn)
b) Ta có: △ABD = △ACE (cmt)
=>AD = AE (các cặp cạnh tương ứng)
=>△AED cân tại A
c) cho AF nằm trên AH sao cho AF\(\perp\)ED tại F
Xét △AFE và △AFD
góc AFE = góc AFD = 90o (AF\(\perp\)ED tại F)
AE = AD (cmt)
AF là cạnh chung
Vậy △AFE = △AFD (ch.cgv)
=>FE = FD (các cặp cạnh tương ứng)
=> F là trung điểm của ED
Vì AF nằm trên AH
=> AH đi qua trung điểm của AE và AH\(\perp\)ED
=>AH là đường trung trực của ED
d)Xét ΔECB và\(\Delta\)DBC
góc CEB = góc BDC = 90o ( BD vuông góc AC, CE vuông góc AB)
CB là cạnh chung
góc EBC = góc DCB (ΔABC cân tại A)
vậy ΔECB = \(\Delta\)DBC (ch.gn)
=> góc ECB = góc DBC (các cặp góc tương ứng)
Xét ΔCDB và ΔCDK
DB = DK (gt)
góc CDB = góc CDK = 90o (gt)
DC là cạnh chung
Vậy ΔCDB = ΔCDK (c.g.c)
=> góc CBD = góc CKD (các cặp góc tương ứng)
Mà góc CBD = góc ECB (cmt)
=> góc ECB=DKC
4. Cho tam giác ABC cân tại A (A< 90 độ), vẽ BD vuông vs AC và CE vuông vs AB. Gọi H là giao điểm của BH và CE
a) cm: tam giác ABD=ACE
b) cm: tam giác AED cân
c) cm: AH là đường trung trực của ED
d) trên tia đối của tia DB lấy điểm K sao cho DK=DB. cm:^ECB=^DKC
cho tam giác ABC cân tại A ( A<90 độ), vẽ BD vuông với AC và CE vuông với AB. gọi H là giao điểm của BD và CE.
a, CM tam giác ABD = tam giác ACE
b, cm: tam giác AED cân
c, cm: AH là đường trung trực của ED
d, trên tia đối của tia DB lấy điểm K sao cho DK=db. cm góc ECB = góc DCK
a, Xét \(\Delta\)ABD và \(\Delta\)ACE có:
AB=AC( tam giác ABC cân tại A)
\(\widehat{A}\)chung
\(\Rightarrow\)\(\Delta\)ABD=\(\Delta\)ACE( CH-GN)
b, vì \(\Delta\)ABD=\(\Delta\)ACE\(\Rightarrow\)AD=AE\(\Rightarrow\)tam giác AED cân tại A
Cm: Xét t/giác ABD và t/giác ACE
có góc CEA = góc BDA = 900 (gt)
AB = AC (gt)
góc A : chung
=> t/giác ABD = t/giác ACE (ch - gn)
b) Ta có: t/giác ABD = t/giác ACE (cmt)
=> AE = AD (hai cạnh tương ứng)
=> t/giác AED là t/giác cân tại A
c) Gọi I là giao điểm của AH và ED.
Ta có: AE + EB = AB
AD + DC = AC
và AB = AC (gt); AE = AD (cmt)
=> EB = DC
Do t/giác ABD = t/giác ACE (cm câu a)
=> góc ABD = góc ACE (hai cạnh tương ứng)
Xét t/giác EHB và t/giác DHC
có góc BEH = góc HDC (gt)
EB = DC (cmt)
góc EBH = góc HCD (cmt)
=> t/giác BEH = t/giác DHC (g.c.g)
=> EH = DH (hai cạnh tương ứng)
Xét t/giác AEH và t/giác ADH
có AE = AD (cmt)
góc AEH = góc ADH (gt)
EH = DH (cmt)
=> t/giác AEH = t/giác ADH (c.g.c)
=> góc EAH = góc DAH (hai góc tương ứng)
Xét t/giác AEI và t/giác ADI
có góc EAI = góc DAI (cmt)
AE = AD (cmt)
góc AEI = góc ADI (vì t/giác AED cân)
=> t/giác AEI = t/giác ADI (g.c.g)
=> EI = HD (hai cạnh tương ứng) (1)
=> góc AIE = góc AID (hai góc tương ứng)
Mà góc AEI + góc AID = 1800 (kề bù)
=> 2.góc AEI = 1800
=> góc AEI = 1800 : 2
=> góc AEI = 900
=> AI \(\perp\)ED (2)
Từ (1) và (2) suy ra AI là đường trung trực của ED hay AH là đường trung trực của ED
d) Sửa đề Cm : góc ECB = góc DKC
Ta có: góc BDC + góc KDC = 1800
=> góc KDC = 1800 - góc BDC = 1800 - 900 = 900
Xét t/giác BDC và t/giác KDC
có BD = DK (gt)
góc BDC = góc KDC = 900 (Cmt)
DC : chung
=> t/giác BDC = t/giác KDC (c.g.c)
=> góc K = góc DBC (hai góc tương ứng) (3)
Xét t/giác BEC và t/giác CDB
có góc BDC = góc CDB = 900 (gt)
BC : chung
góc B = góc C (vì t/giác ABC cân)
=> t/giác BEC = t/giác CDB (ch -gn)
=> góc BDE = góc DBC (hai góc tương ứng) (4)
Từ (3) và (4) suy ra góc ECB = góc DKC
Cho tam giác ABC cân tại A (góc A<90 độ), vẽ BD vuông góc với AC và CE vuông góc với AB. Gọi H là giao điểm của BD và CE.
a) Chứng minh Ah là đường trung trực của ED
b) Trên tia đối của tia DB lấy điểm K sao cho DK =DB. Chứng minh góc ECB = góc DKC
Cho ∆ abc cân tại a(góc a <90°),vẽ bd vuông góc với ac và ce vuông góc với ab gọi h là giao điểm vủa bd và ce.chứng minh
a)∆abd=∆ace b) ∆aed cân c) ah là đường trung trực của ed d) trên tia đối của db lấy k sao cho dk =db,chứng minh góc ecb=góc dkc
cho tam giác ABC cân tại A ( góc A < 90 ) , vẽ BD vuông góc với AC ( D thuộc AC ) và Ce vuông góc với AB ( E thuộc AB ), gọi H là giao điểm của BD và CE. CM
a. tam giác ABD= tam giác ACE
b. tam giác AED cân
c. AH là đường trung trực của ED
d. trên tia đối của tia DB lấy điểm K sao cho DK=DB. CM góc ECB= DKC
e. tìm điểm cách điều 3 đỉnh của tam giác BCK. giải thích
Cho tam giác ABC cân tại A ( A^<90*), vẽ BD vuông góc AC và CE vuông góc AB. Gọi H là giao điểm của BD và CE
a, chứng minh tam giác ABD = tam giác ACE
b, chứng minh tam giác AED cân
c, chứng minh AH là đường trung trực của ED
d, trên tia đối của tia DB lấy điểm K sao cho DK = DB . chứng minh ECB^ = DKC^
Cho tam giác ABC cân tại A ( A^<90*), vẽ BD vuông góc AC và CE vuông góc AB. Gọi H là giao điểm của BD và CE
a, chứng minh tam giác ABD = tam giác ACE
b, chứng minh tam giác AED cân
c, chứng minh AH là đường trung trực của ED
d, trên tia đối của tia DB lấy điểm K sao cho DK = DB . chứng minh ECB^ = DKC^
Bài 5. Cho AABC cân tại 4(A<90°), vě BD 1 AC và CE l AB . Gọi H là giao điểm của BD và CE.
a) Chứng minh: AABD = AACE.
b) Chứng minh: AADE cân.
c) Chứng minh AH là đường trung trực của ED.
d) Trên tia đối của tia DB lấy điểm K sao cho DK = DB . Chứng minh: ECB = DKC
e đang cần gấp lắm ạ cảm ơn mn
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
b: Ta có: ΔABD=ΔACE
=>AD=AE
=>ΔADE cân tại A
c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có
AH chung
AE=AD
Do đó: ΔAEH=ΔADH
=>HE=HD
=>H nằm trên đường trung trực của ED(1)
ta có: AE=AD
=>A nằm trên đường trung trực của ED(2)
Từ (1) và (2) suy ra AH là đường trung trực của ED
d: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
EC=BD(ΔABD=ΔACE)
BC chung
Do đó: ΔEBC=ΔDCB
=>\(\widehat{ECB}=\widehat{DBC}\)(3)
Xét ΔDBC vuông tại D và ΔDKC vuông tại D có
DB=DK
DC chung
Do đó: ΔDBC=ΔDKC
=>\(\widehat{DBC}=\widehat{DKC}\)(4)
Từ (3) và (4) suy ra \(\widehat{DKC}=\widehat{ECB}\)