cho hpt:
\(\left\{{}\begin{matrix}x-y=2\\mx+y=3\end{matrix}\right.\) . Tìm m để hpt có nghiệm (x;y) là các số dương
1) cho hpt: \(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)
tìm m để hpt có nghiệm (\(x_0,y_0\)) t/m: \(x_0^2+y_0^2=9m\)
2) cho hpt: \(\left\{{}\begin{matrix}x+my=3m\\mx-y=m^2-2\end{matrix}\right.\)
tìm m để hpt có nghiệm duy nhất \(\left(x_0,y_0\right)\) t/m: \(x_0^2-2x_0-y_0>0\)
giúp mk vs mk cần gấp
Bài 1.
\(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=5-2m\\6x+3y=9m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+14\\x-3y=5-2m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\m+2-3y=5-2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\-3y=-3m+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=m-1\end{matrix}\right.\)
\(x_0^2+y_0^2=9m\)
\(\Leftrightarrow\left(m+2\right)^2+\left(m-1\right)^2=9m\)
\(\Leftrightarrow m^2+4m+4+m^2-2m+1-9m=0\)
\(\Leftrightarrow2m^2-7m+5=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{5}{2}\end{matrix}\right.\) ( Vi-ét )
Cho hpt \(\left\{{}\begin{matrix}\left(m+1\right)x-y=3\\mx+y=m\end{matrix}\right.\)
Tìm m để hpt có nghiệm duy nhất (x;y) t/m \(x+y>0\)
Cho hpt:\(\left\{{}\begin{matrix}\left(m-3\right)x+y=2\\mx+2y=8\end{matrix}\right.\)
Tìm m để nghiệm của hpt (x,y) là các số nguyên
Cho HPT: \(\left\{{}\begin{matrix}x-my=0\\mx-y=m+1\end{matrix}\right.\). Tìm m để HPT có nghiệm (x;y)=(2;3)
(x:y)=(2;3)
\(\Leftrightarrow\left\{{}\begin{matrix}2-3m=0\\2m-3=m+1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2-3m=0\\m-4=0\end{matrix}\right.\)
\(\Leftrightarrow2-3m=m-4\)
\(\Leftrightarrow4m=6\)
\(\Leftrightarrow m=\dfrac{3}{2}\)
Cho HPT: \(\left\{{}\begin{matrix}x-my=0\\mx-y=m+1\end{matrix}\right.\). Tìm m để HPT có nghiệm (x;y)=(2;3)
Thay x=2 và y=3 vào HPT, ta được:
\(\left\{{}\begin{matrix}2-3m=0\\2m-3=m+1\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
\(\left\{{}\begin{matrix}mx+y=3\\\left(m-1\right)x-y=7\end{matrix}\right.\)
1. tìm m để hpt có nghiệm duy nhất mà x và y trái dấu
2. tìm m để hpt có nghiệm duy nhất mà x và y là số nguyên
1: Để hệ có nghiệm duy nhất thì \(\dfrac{m}{m-1}\ne\dfrac{1}{-1}\ne-1\)
=>\(\dfrac{m+m-1}{m-1}\ne0\)
=>\(\dfrac{2m-1}{m-1}\ne0\)
=>\(m\notin\left\{\dfrac{1}{2};1\right\}\)(1)
\(\left\{{}\begin{matrix}mx+y=3\\\left(m-1\right)x-y=7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}mx+\left(m-1\right)x=3+7\\mx+y=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(2m-1\right)=10\\mx+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10}{2m-1}\\y=3-mx=3-\dfrac{10m}{2m-1}=\dfrac{6m-3-10m}{2m-1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{10}{2m-1}\\y=\dfrac{-4m-3}{2m-1}\end{matrix}\right.\)
Để x và y trái dấu thì x*y<0
=>\(\dfrac{10}{2m-1}\cdot\dfrac{-4m-3}{2m-1}< 0\)
=>\(\dfrac{10\left(4m+3\right)}{\left(2m-1\right)^2}>0\)
=>4m+3>0
=>m>-3/4
Kết hợp (1), ta được: \(\left\{{}\begin{matrix}m>-\dfrac{3}{4}\\m\notin\left\{\dfrac{1}{2};1\right\}\end{matrix}\right.\)
2: Để x,y là số nguyên thì \(\left\{{}\begin{matrix}10⋮2m-1\\-4m-3⋮2m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2m-1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\\-4m+2-5⋮2m-1\end{matrix}\right.\)
=>\(2m-1\in\left\{1;-1;5;-5\right\}\)
=>\(2m\in\left\{2;0;6;-4\right\}\)
=>\(m\in\left\{1;0;3;-2\right\}\)
Kết hợp (1), ta được: \(m\in\left\{0;3;-2\right\}\)
bài 1:
tìm m để hpt sau vô nghiệm \(\left\{{}\begin{matrix}x+my=1\\mx+y=2m\end{matrix}\right.\)
bài 2cho hpt\(\left\{{}\begin{matrix}mx-2y=1\\x+ny=-2\end{matrix}\right.\)có nghiệm(x;y).tìm m để hpt trên có nghiệm thỏa mãn x+y=1
tìm m để hpt sau có vô số nghiệm \(\left\{{}\begin{matrix}mx-y=1\\-x+y=-m\end{matrix}\right.\)
Bài 1:
Để hpt đã cho vô nghiệm thì m = 1 (lật sách trang 25 là hiểu)
Bài 2 :
Để hpt đã cho có vô số nghiệm thì m = 1
\(\left\{{}\begin{matrix}x+my=1\\mx+4y=2\end{matrix}\right.\)
tìm m để HPT có nghiệm duy nhất (x,y) sao cho x+y>-5
Để hệ có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{4}\)
=>\(m^2\ne4\)
=>\(m\notin\left\{2;-2\right\}\)
Ta có: \(\left\{{}\begin{matrix}x+my=1\\mx+4y=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=1-my\\m\left(1-my\right)+4y=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=1-my\\m-m^2\cdot y+4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-my\\y\left(-m^2+4\right)=2-m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=1-my\\y=\dfrac{-\left(m-2\right)}{-\left(m^2-4\right)}=\dfrac{1}{m+2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{1}{m+2}\\x=1-\dfrac{m}{m+2}=\dfrac{m+2-m}{m+2}=\dfrac{2}{m+2}\end{matrix}\right.\)
x+y>-5
=>\(\dfrac{2}{m+2}+\dfrac{1}{m+2}>-5\)
=>\(\dfrac{3}{m+2}+5>0\)
=>\(\dfrac{3+5m+10}{m+2}>0\)
=>\(\dfrac{5m+13}{m+2}>0\)
TH1: \(\left\{{}\begin{matrix}5m+13>0\\m+2>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>-\dfrac{13}{5}\\m>-2\end{matrix}\right.\)
=>\(m>-2\)
TH2: \(\left\{{}\begin{matrix}5m+13< 0\\m+2< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m< -\dfrac{13}{5}\\m< -2\end{matrix}\right.\)
=>\(m< -\dfrac{13}{5}\)
Vậy: \(\left[{}\begin{matrix}m< -\dfrac{13}{5}\\\left\{{}\begin{matrix}m>-2\\m\ne2\end{matrix}\right.\end{matrix}\right.\)
cho hpt:\(\left\{{}\begin{matrix}mx-y=1\\\dfrac{x}{2}-\dfrac{y}{2}=335\end{matrix}\right.\)
a. giải hpt khi m=2
b.tìm giá trị của m để hpt có nghiệm duy nhất
a/ Xét pt : \(\left\{{}\begin{matrix}mx-y=1\\\dfrac{x}{2}-\dfrac{y}{2}=335\end{matrix}\right.\)
Khi \(m=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=1\\x-y=670\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-669\\y=-1339\end{matrix}\right.\)
b/ \(\left\{{}\begin{matrix}mx-y=1\\x-y=670\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=x-670\\mx-\left(x-670\right)=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=x-670\\x\left(m-1\right)=-669\end{matrix}\right.\)
Để pt có nghiệm duy nhất \(\Leftrightarrow m\ne1\)
Vậy...
cho hệ phương trình:
\(\left\{{}\begin{matrix}mx+y=-1\\x+y=-m\end{matrix}\right.\)
tìm m để hpt có nghiệm duy nhất thỏa mãn \(y^2=x\)