S = -1+6-6-6^2+6^3-6^4 +...+6^2017
Tình s
tìm số dư của 6^2018 khi chia cho 7
Cho \(S=1-6+6^2-6^3+...-6^{2021}+6^{2022}\).Tính S rồi tìm số dư khi chia \(6^{2023}\) cho 7.
a)Tính S = 1+2-3-4+5+6-7-8+9-10-...+2018-2019-2020-2021
b)Trong 1 phép chia ,số bị chia là 89,số dư là 12.Tìm số chia và thương.
\(S=1+2-3-4+5+6-7-8+9-10-...+2018-2019-2020-2021\)
\(S=1+\left(2-3\right)-4+5+\left(6-7\right)-8+9-10-...+\left(2018-2019\right)-2020-2021\)
\(S=1-1+1-1+...-1-2020-2021=-1-2020-2021=-4042\)
b) Tích của số chia và thương là :
\(89-12=77\)=7.11
⇒ Số chia là 11; thương là 7
Bài 3 tìm dư phép chia sau: 10^15 +5 khi chia cho 3 khi chia cho 9 Bài 4 tìm dư cua phép chia sau: 10^140 + 6 khi nào chia cho 3 khia nào chia cho 9 Bài 5 tính tổng:C=1+4+8+12+16+20+.....+160 Bài 6 so sánh 333^444 và 444^333 Bài 7 cho s=1-“+2^2+2^3+2^4+2^5+2^6+2^7.chứng tỏ S chia hết cho 3
3:
\(A=10^{15}+5=1000...05\)(Có 15 chữ số 0)
Tổng các chữ số trong số A là:
1+0+0+...+0+5=6
=>A chia hết cho 3
=>Số dư khi A chia cho 3 là 0
Vì tổng các chữ số trong A là 6 không chia hết cho 9
nên số dư của A khi chia cho 9 là 6
5:
Số số hạng trong dãy từ 4 đến 160 là: \(\dfrac{160-4}{4}+1=\dfrac{156}{4}+1=40\left(số\right)\)
Tổng các số trong dãy từ 4 đến 160 là:
\(\left(160+4\right)\cdot\dfrac{40}{2}=164\cdot20=3280\)
=>C=3280+1=3281
Tìm số tự nhiên nhỏ nhất khác 1 sao cho khi chia số đó cho 2 dư 1 ,chia 3 dư 2,chia 4 dư 3,chia 5 dư 4,chia 6 dư 5, chia 7 dư 6(cách làm)
Tìm số tự nhiên nhỏ nhất sao cho khi chia số đó cho 2 dư 1, cho 3 dư 2, cho 4 dư 3, cho 5 dư 4, cho 6 dư 5, cho 7 dư 6
Gọi số phải tìm là a thì a + 1 chia hết cho 2, 3, 4, 5, 6 và 7 như vậy a + 1 có tận cùng là chữ số 0
a + 1 không là số có 1 chữ số. Nếu a + 1 có 2 chữ số thì a + 1 tận cùng là chữ số 0 lại chia hết cho 7 nên a + 1 = 70 (loại vì 70 không chia hết cho 3)
Trường hợp a + 1 có 3 chữ số thì có dạng xy0
. Số xy0 chia hết cho 4 nên y phải bằng 0, 2, 4, 6 hoặc 8
. Số xy0 chia hết cho 7 nên xy bằng 14; 21; 28; 35; 42; 49; 56; 63; 70; 77; 84; 91 hoặc 98
. Số xy0 chia hết cho 3 thì x + y + 0 chia hết cho 3
Kết hợp các điều kiện trên thì a + 1 = 420 vậy a = 419
Đáp số : 419.
Tìm số tự nhiên nhỏ nhất sao cho khi chia số đó cho 2 dư 1, cho 3 dư 2, cho 4 dư 3, cho 5 dư 4, cho 6 dư 5, cho 7 dư 6
Gọi số phải tìm là a thì a + 1 chia hết cho 2, 3, 4, 5, 6 và 7 như vậy a + 1 có tận cùng là chữ số 0
a + 1 không là số có 1 chữ số. Nếu a + 1 có 2 chữ số thì a + 1 tận cùng là chữ số 0 lại chia hết cho 7 nên a + 1 = 70 (loại vì 70 không chia hết cho 3)
Trường hợp a + 1 có 3 chữ số thì có dạng xy0
. Số xy0 chia hết cho 4 nên y phải bằng 0, 2, 4, 6 hoặc 8
. Số xy0 chia hết cho 7 nên xy bằng 14; 21; 28; 35; 42; 49; 56; 63; 70; 77; 84; 91 hoặc 98
. Số xy0 chia hết cho 3 thì x + y + 0 chia hết cho 3
Kết hợp các điều kiện trên thì a + 1 = 420 vậy a = 419
Đáp số: 419.
Tìm số tự nhiên nhỏ nhất sao cho khi chia số đó cho 2 dư 1, cho 3 dư 2, cho 4 dư 3, cho 5 dư 4, cho 6 dư 5, cho 7 dư 6
Gọi số phải tìm là a thì a + 1 chia hết cho 2, 3, 4, 5, 6 và 7 như vậy a + 1 có tận cùng là chữ số 0
a + 1 không là số có 1 chữ số. Nếu a + 1 có 2 chữ số thì a + 1 tận cùng là chữ số 0 lại chia hết cho 7 nên a + 1 = 70 (loại vì 70 không chia hết cho 3)
Trường hợp a + 1 có 3 chữ số thì có dạng xy0
. Số xy0 chia hết cho 4 nên y phải bằng 0, 2, 4, 6 hoặc 8
. Số xy0 chia hết cho 7 nên xy bằng 14; 21; 28; 35; 42; 49; 56; 63; 70; 77; 84; 91
hoặc 98
. Số xy0 chia hết cho 3 thì x + y + 0 chia hết cho 3 Kết hợp các điều kiện trên thì a + 1 = 420 vậy a = 419
Đáp số : 419.
Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.
Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.
Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học sinh của khối 6.
Bài 4: Một số tự nhiên chia cho 7 thì dư 5, chia cho 13 thì dư 4. Nếu đem số đó chia cho 91 thì dư bao nhiêu?
Bài 5: Một số tự nhiên a khi chia cho 7 dư 4, chia cho 9 dư 6. Tìm số dư khi chia a cho 63.
Bài 6: Tìm số tự nhiên n lớn nhất có ba chữ số, sao cho n chia cho 15 và 35 có số dư lần lượt là 9 và 29.
Bài 7: Tìm số tự nhiên nhỏ nhất có ba chữ số chia cho 18; 30; 45 có số dư lần lượt là 8; 20; 35.