Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Phương Nguyễn
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 12 2021 lúc 22:12

\(23-y^2=7\left(x-2004\right)^2\ge0\\ \Leftrightarrow y^2\le23\)

Mà \(y\in N\Leftrightarrow y\in\left\{0;1;2;3;4\right\}\)

Với \(y=0\Leftrightarrow7\left(x-2004\right)^2=23\left(loại\right)\)

Với \(y=1\Leftrightarrow7\left(x-2004\right)^2=22\Leftrightarrow\left(x-2004\right)^2=\dfrac{22}{7}\left(loại\right)\)

Với \(y=2\Leftrightarrow7\left(x-2004\right)^2=19\Leftrightarrow\left(x-2004\right)^2=\dfrac{19}{7}\left(loại\right)\)

Với \(y=3\Leftrightarrow7\left(x-2004\right)^2=14\Leftrightarrow\left(x-2004\right)^2=2\left(loại\right)\)

Với \(y=4\Leftrightarrow7\left(x-2004\right)^2=7\Leftrightarrow\left[{}\begin{matrix}x-2004=1\\x-2004=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2005\\x=2003\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(2005;4\right);\left(2003;4\right)\)

I am➻Minh
Xem chi tiết
I am➻Minh
16 tháng 1 2019 lúc 20:11

help me

zZz Cool Kid_new zZz
19 tháng 2 2019 lúc 11:42

Ta có:\(7\left(x-2004\right)^2=23-y^2\)

\(\Rightarrow y^2+7\left(x-2004\right)^2=23\)

Do \(y^2\ge0\Rightarrow7\left(x-2004\right)^2\le23\)

\(\Rightarrow\left(x-2004\right)^2\le\frac{23}{7}\)

\(\Rightarrow\orbr{\begin{cases}\left(x-2004\right)^2=1\\\left(x-2004\right)^2=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=2005\\x=2004\end{cases}}\)

Với \(x=2005\Rightarrow23-7=y^2\)

\(\Rightarrow y^2=16\Rightarrow y=4\left(L\right)\) vì y là số nguyên tố.

Với \(x=2004\Rightarrow y^2=23\left(L\right)\)

Vậy không có số nguyên tố x;y thỏa mãn đề bài.

Linh Nhi
Xem chi tiết
ngonhuminh
18 tháng 3 2017 lúc 22:01

\(23-y^2\ge0\Rightarrow y^2\le23\Rightarrow-23\le y\le23\)

\(\left\{{}\begin{matrix}y\in N\\y^2=\left\{0,1,4,9,16\right\}\end{matrix}\right.\) \(\left\{{}\begin{matrix}23-y^2=\left\{23,22,19,14,7\right\}\\\end{matrix}\right.\)=> Vô Nghiệm.

Xem chi tiết
I don
29 tháng 3 2019 lúc 6:44

ta có: \(7.\left(x-2004\right)^2\ge0\)

\(\Rightarrow23-y^2\ge0\)

\(\Rightarrow y^2\in\left\{1;4;9;16;0\right\}\)

mà y là STN

=> \(y\in\left\{1;2;3;4;0\right\}\)

thay y = 1 vào bt

7.(x-2004)2 = 23 - 12

....

đến đây bn tự lm nha!
 

suy ra (x-2004)^2=\(\frac{23}{7}\)-\(\frac{y^2}{7}\)<4

suy ra \(\orbr{\begin{cases}\text{(x-2004)^2=0}\\\left(x-2004\right)^2=1\end{cases}}\)

suy ra \(\orbr{\begin{cases}x-2004=0\\x-2004=1\end{cases}}\)suy ra x=2004;x=2005;x=2003

             \(\orbr{\begin{cases}x-2004=-1\\\end{cases}}\)

Với x=0 suy ra 23-y^2=0

suy ra y^2=23(loại)

Với x=1 suy ra 23-y^2=7

suy ra y^2=16 

suy ra y=4(vì y thuộc N)

Vậy cặp số cần tìm là (x,y)=(2005;4);(2003;4)

ILoveMath
Xem chi tiết
Phí Quỳnh Anh
Xem chi tiết
Buddy
Xem chi tiết
Vui lòng để tên hiển thị
22 tháng 7 2023 lúc 8:29

`a, (4x^3y^2 - 8x^2y + 10xy) : 2xy`

`= 2x^2y - 4x + 5`.

`b, 7x^4y^2 - 2x^2y^2 - 5x^3y^4 : 3x^2y`

`= 7/3 x^2y - 3/2y - 5/3xy^3`

Đợi anh khô nước mắt
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 3 2021 lúc 0:17

a.

Thay số 12 từ pt trên xuống dưới:

\(x^3+2xy^2+y\left(x^2+8y^2\right)=0\)

\(\Leftrightarrow x^3+x^2y+2xy^2+8y^3=0\)

\(\Leftrightarrow\left(x+2y\right)\left(x^2-xy+4y^2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2y\\x=y=0\left(ktm\right)\end{matrix}\right.\)

Thế vào pt đầu:

\(\left(-2y\right)^2+8y^2=12\Leftrightarrow y^2=1\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=-2\\y=-1\Rightarrow x=2\end{matrix}\right.\)

Nguyễn Việt Lâm
27 tháng 3 2021 lúc 0:18

b.

Thế số 1 từ pt trên xuống dưới:

\(x^7+y^7=\left(x^4+y^4\right)\left(x^3+y^3\right)\)

\(\Leftrightarrow x^4y^3+x^3y^4=0\)

\(\Leftrightarrow x^3y^3\left(x+y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\\y=-x\end{matrix}\right.\)

Thế vào pt đầu: \(\Rightarrow\left[{}\begin{matrix}y^3=1\\x^3=1\\x^3-x^3=1\left(vô-nghiệm\right)\end{matrix}\right.\)

Vậy nghiệm của hệ là: \(\left(x;y\right)=\left(1;0\right);\left(0;1\right)\)