Tìm x ∈ Z:
a) x(x + 5) = 0
b) (x - 3)(6 - x) = 0
c) (x - 1)(x2 + 1) = 0
Bài 1. Liệt kê các phần tử của tập hợp sau:
a) A = {x Î N | x < 6} b) B = {x Î N | 1 < x £ 5}
c) C = {x Î Z , |x| £ 3} d) D = {x Î Z | x2 - 9 = 0}
e) E = {x Î R | (x - 1)(x2 + 6x + 5) = 0} f) F = {x Î R | x2 - x + 2 = 0}
g) G = {x Î N | (2x - 1)(x2 - 5x + 6) = 0} h) H = {x | x = 2k với k Î Z và -3 < k < 13}
i) I = {x Î Z | x2 > 4 và |x| < 10} j) J = {x | x = 3k với k Î Z và -1 < k < 5}
k) K = {x Î R | x2 - 1 = 0 và x2 - 4x + 3 = 0} l) L = {x Î Q | 2x - 1 = 0 hay x2 - 4 = 0
a: \(A=\left\{0;1;2;3;4;5\right\}\)
b: \(B=\left\{2;3;4;5\right\}\)
c: \(C=\left\{0;1;-1;2;-2;3;-3\right\}\)
Bài 1 : Tìm x thuộc Z, sao cho :
a) ( x - 1 ) ( x - 3 ) > = 0
b) ( x - 5 ) ( x - 7 ) < 0
c) ( x2 - 1 ) ( x2 - 4 ) < 0
Tìm x Î Z biết:
a) x ( x - 3) = 0;
b) x ( x + 9) = 0;
c) ( x + 1) ( x - 1) = 0;
d) ( x - 13 ) ( x 2 + 8 ) = 0 .
a) x Î{0;3}.
b) xÎ{0;-9}.
c) x Î{-l; 11}.
d) x = 13.
Tìm x thuộc Z biết a) x ( x - 3) = 0; b) x ( x + 9) = 0 c) ( x + 1) ( x - 1) = 0 d) ( x - 13) ( x 2 + 8) = 0
c) C = x(y2 +z2)+y(z2 +x2)+z(x2 +y2)+2xyz.
d) D = x3(y−z)+y3(z−x)+z3(x−y).
e) E = (x+y)(x2 −y2)+(y+z)(y2 −z2)+(z+x)(z2 −x2).
b) x2 +2x−24 = 0.
d) 3x(x+4)−x2 −4x = 0.
f) (x−1)(x−3)(x+5)(x+7)−297 = 0.
(2x−1)2 −(x+3)2 = 0.
c) x3 −x2 +x+3 = 0.
e) (x2 +x+1)(x2 +x)−2 = 0.
a) A = x2(y−2z)+y2(z−x)+2z2(x−y)+xyz.
b) B = x(y3 +z3)+y(z3 +x3)+z(x3 +y3)+xyz(x+y+z). c) C = x(y2 −z2)−y(z2 −x2)+z(x2 −y2).
Đề bài yêu cầu gì vậy em.
Tìm x thuộc Z biết:
a, x(x+3)=0
b, (x-2)(5-x)=0
c,(x-1)(\(^{x2}\) +1)=0
a) x(x+3)=0
TH1: x=0 TH2:x+3=0
x= -3
b)(x-2)(5-x)=0
TH1: x-2=0 TH2: 5-x=0
x= -2 x=5
c)làm tương tự những câu trên
chúc bạn học tốt
a, x(x+3)=0
<=> x=0 hoặc x+3=0
<=>x=0 hoặc x=-3
Vậy \(x\in\left\{0;-3\right\}\)
b, (x-2)(5-x)=0
<=>x-2=0 hoặc 5-x=0
<=>x=2 hoặc x=5
Vậy \(x\in\left\{2;5\right\}\)
c,(x-1)(x2 +1)=0
<=> x-1=0 hoặc x2+1=0
<=>x=1
Vậy x=1
a. \(x\left(x+3\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x+3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\x=-3\end{cases}}\)
b. \(\left(x-2\right)\left(5-x\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x-2=0\\5-x=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\x=5\end{cases}}\)
c. \(\left(x-1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\x^2+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\x^2=-1\left(ktm\right)\end{cases}}\)
Tìm x, y thuộc Z biết:
a) x ( x + 6 ) = 0
b) ( x − 3 ) . ( y + 7 ) = 0
c) ( x − 2 ) ( x 2 + 2 ) = 0
a) x ( x + 6 ) = 0 ⇔ x = 0 x + 6 = 0 ⇔ x = 0 x = − 6
Vậy x = 0 hoặc x = - 6
b) ( x − 3 ) . ( y + 7 ) = 0 ⇔ x − 3 = 0 y + 7 = 0 ⇔ x = 3 y = − 7
Vậy x = 3 hoặc x = -7
c) ( x − 2 ) ( x 2 + 2 ) = 0 ⇔ x − 2 = 0 x 2 + 2 = 0 ⇔ x = 2 x 2 = − 2 ( L )
Vậy x = 2
Cho E = {x ≤ Z||x| ≤ 5}, F = {x ∈ N ||x| ≤ 5} và
B = {x ∈ Z|(x – 2)(x + 1)(2x2 – x – 3) = 0}. Chứng minh A ⊂ E và B⊂E
Cho A = {x ∈ R | x2+ x – 12 = 0 và 2x2 – 7x + 3 = 0}
B = {x ∈ Z | 3x2 – 13x + 12 =0 hoặc x2 – 3x = 0}
Bài 5. Tìm x ∈ Z biết:
a) (x – 2)(– 4 – x2) > 0
b) (x2 + 2)(x + 3) > 0
c) (x + 3)(x – 4) > 0. Mik sẽ tick nha
\(a,\Leftrightarrow\left(2-x\right)\left(x^2+4\right)>0\Leftrightarrow2-x>0\Leftrightarrow x< 2\\ b,\Leftrightarrow x+3>0\Leftrightarrow x>-3\\ c,\Leftrightarrow\left[{}\begin{matrix}x< -3\\x>4\end{matrix}\right.\)
b: \(\Leftrightarrow x+3>0\)
hay x>-3
Cho: E={x\(\in\)Z| |x|≤5}, A={x\(\in\)R|x2+3x-4=0}, B={x\(\in\)Z|(x-2)(x+1)(2x2-x-3)=0}
Tìm CE(A\(\cap\)B), CE(A\(\cup\)B)
Lời giải:
$E=\left\{-5;-4;-3;-2;-1;0;1;2;3;4;5\right\}$
$A=\left\{1; -4\right\}$
$B=\left\{-1; 2\right\}$
Do đó:
$A\cup B = \left\{-4; -1; 1;2\right\}$
$C_E(A\cup B)=\left\{-5;-3;-2; 0;3;4;5\right\}$
$A\cap B = \varnothing$
$C_E(A\cap B)=E$