Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phương Nhi Nguyễn
Xem chi tiết
Akira Kuro
Xem chi tiết
Vi Linh Chi
Xem chi tiết
Minh Bui Tuan Minh
4 tháng 8 2016 lúc 22:43

pn lấy đề ở đâu vậy ?

Vi Linh Chi
5 tháng 8 2016 lúc 9:57

Ở lớp học thêm c ạ

nguyen ha giang
Xem chi tiết
vu tuananh
Xem chi tiết
OoO Min min OoO
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
4 tháng 11 2018 lúc 17:50

\(\sqrt{\sqrt{6+\sqrt{20}}}=\sqrt{\sqrt{5+2\sqrt{5}+1}}=\sqrt{\sqrt{\left(\sqrt{5}+1\right)^2}}=\sqrt{\sqrt{5}+1}< \sqrt{\sqrt{6}+1}\)

vu tuananh
Xem chi tiết
Huyền Thụn
Xem chi tiết
 Mashiro Shiina
23 tháng 11 2017 lúc 1:04

Ta sẽ chứng minh 1 bđt sau:

\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\)

\(\Rightarrow a+2\sqrt{ab}+b\ge a+b\)

\(\Rightarrow a+2\sqrt{ab}+b-a-b\ge0\)

\(\Rightarrow2\sqrt{ab}\ge0\) *đúng*

Dấu "=" xảy ra khi: \(ab=0\)

Trở lại bài toán,vì không có thừa số nào bằng 0,nên ta dễ dàng có: \(\sqrt{a}+\sqrt{b}>\sqrt{a+b}\)

Hay \(B=\sqrt{1}+\sqrt{2}+\sqrt{3}+\sqrt{20}+\sqrt{40}+\sqrt{60}=\left(\sqrt{1}+\sqrt{20}\right)+\left(\sqrt{40}+\sqrt{2}\right)+\left(\sqrt{60}+\sqrt{3}\right)>\sqrt{20+1}+\sqrt{40+2}+\sqrt{60+3}=A\)

oOo Min min oOo
Xem chi tiết
Thuỷ Thủ Sao Kim
4 tháng 11 2018 lúc 16:42

m kmnhbk5htb ,k55555555555555555555555555555555555e,

Lê Quốc Anh
4 tháng 11 2018 lúc 16:51

\(\sqrt{\sqrt{6+\sqrt{20}}}=\sqrt{\sqrt{6+2\sqrt{5}}}=\sqrt{\sqrt{\left(\sqrt{5}+1\right)^2}}=\sqrt{\sqrt{5}+1}\)

Vì \(\sqrt{\sqrt{5}+1}< \sqrt{\sqrt{6}+1}\Rightarrow\sqrt{\sqrt{6+\sqrt{20}}}< \sqrt{1+\sqrt{6}}\)

Incursion_03
4 tháng 11 2018 lúc 17:02

Có \(\sqrt{\sqrt{6+\sqrt{20}}}=\sqrt{\sqrt{5+2\sqrt{5}+1}}\)

                                           \(=\sqrt{\sqrt{\left(1+\sqrt{5}\right)^2}}\)

                                          \(=\sqrt{1+\sqrt{5}}< \sqrt{1+\sqrt{6}}\)

Vậy \(\sqrt{\sqrt{6+\sqrt{20}}}< \sqrt{1+\sqrt{6}}\)