\(\sqrt{\sqrt{6+\sqrt{20}}}=\sqrt{\sqrt{5+2\sqrt{5}+1}}=\sqrt{\sqrt{\left(\sqrt{5}+1\right)^2}}=\sqrt{\sqrt{5}+1}< \sqrt{\sqrt{6}+1}\)
\(\sqrt{\sqrt{6+\sqrt{20}}}=\sqrt{\sqrt{5+2\sqrt{5}+1}}=\sqrt{\sqrt{\left(\sqrt{5}+1\right)^2}}=\sqrt{\sqrt{5}+1}< \sqrt{\sqrt{6}+1}\)
Cho \(A=\sqrt{2017}-\sqrt{2016}\) ; \(B=\sqrt{2018}-\sqrt{2017}\). So sánh A và B.
So sánh \(5\sqrt{2} + 4\sqrt{5} \) và 16
Thực hiện phép tính:
a)\(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}\)
b)\(\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{15}}\)
c)\(\sqrt{48-6\sqrt{15}}-\sqrt{72-18\sqrt{15}}\)
d)\(\sqrt{29-6\sqrt{20}}+\sqrt{14+3\sqrt{20}}\)
Rút gọn
H=\(\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)
F=\(\frac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)
G=\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
E=\(\frac{2\sqrt{3+\sqrt{5-13+\sqrt{48}}}}{\sqrt{6}+\sqrt{2}}\)
D=\(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
Z=\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10-2\sqrt{5}}}\)
Tính
\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-6\sqrt{20}}}}\)
\(B=\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
So sánh
a)\(-5\sqrt{11}\) và -20
b)\(3\sqrt{2}-\sqrt{6}\) và \(\sqrt{18}-\sqrt{12}\)
a. P=\(\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{6}-\sqrt{2}}+\sqrt{6+2\sqrt{5}-\sqrt{29-12\sqrt{5}}}\)
b.P= (\(\frac{2}{\sqrt{3}-1}-\frac{52}{3\sqrt{3}-1}+\frac{12}{3-\sqrt{3}}\)) ( 5+\(\sqrt{27}\))
c. P= (\(\frac{2+\sqrt{2}}{\sqrt{2}+1}+1\))(\(\frac{2-\sqrt{2}}{\sqrt{2}-1}-1\))
d. P=\(\sqrt{9+\sqrt{17}}-\sqrt{9-\sqrt{17}}-\sqrt{2}\)
đ. P=(2+\(\sqrt{4+\sqrt{6+2\sqrt{5}}}\) )(\(\sqrt{10}-\sqrt{2}\) )
e. P= \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
ê. P= \(\sqrt{8+\sqrt{8}+\sqrt{20}+\sqrt{40}}\)
g. G= \(\frac{2\sqrt{3-\sqrt{3+\sqrt{13+\sqrt{48}}}}}{\sqrt{6}-\sqrt{2}}\)
h. H=\(\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}-\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}\)
i. I= \(\frac{2+\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\frac{2-\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}\)
Rút gọn biểu thức :
a) \(A=\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\)
b) \(B=\frac{2+\sqrt{6}+\sqrt{10}+\sqrt{2}+\sqrt{3}+\sqrt{5}}{\sqrt{8}+\sqrt{12}+\sqrt{20}}.\frac{\sqrt{2}-1}{3}\)
Thực hiện phép tính:
a) \(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
b)\(\sqrt{24-8\sqrt{5}}+\sqrt{9+4\sqrt{5}}\)
c)\(\sqrt{6-4\sqrt{2}}+\sqrt{22-12\sqrt{2}}\)
d)\(\sqrt{41+12\sqrt{5}}-\sqrt{46-6\sqrt{5}}\)
e)\(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)
f)\(\sqrt{17-12\sqrt{2}}+\sqrt{9+4\sqrt{2}}\)
g)\(\sqrt{43+24\sqrt{3}}-\sqrt{49-\sqrt{8\sqrt{3}}}\)
h)\(\sqrt{53-20\sqrt{7}}-\sqrt{64+6\sqrt{7}}\)