a. P=\(\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{6}-\sqrt{2}}+\sqrt{6+2\sqrt{5}-\sqrt{29-12\sqrt{5}}}\)
b.P= (\(\frac{2}{\sqrt{3}-1}-\frac{52}{3\sqrt{3}-1}+\frac{12}{3-\sqrt{3}}\)) ( 5+\(\sqrt{27}\))
c. P= (\(\frac{2+\sqrt{2}}{\sqrt{2}+1}+1\))(\(\frac{2-\sqrt{2}}{\sqrt{2}-1}-1\))
d. P=\(\sqrt{9+\sqrt{17}}-\sqrt{9-\sqrt{17}}-\sqrt{2}\)
đ. P=(2+\(\sqrt{4+\sqrt{6+2\sqrt{5}}}\) )(\(\sqrt{10}-\sqrt{2}\) )
e. P= \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
ê. P= \(\sqrt{8+\sqrt{8}+\sqrt{20}+\sqrt{40}}\)
g. G= \(\frac{2\sqrt{3-\sqrt{3+\sqrt{13+\sqrt{48}}}}}{\sqrt{6}-\sqrt{2}}\)
h. H=\(\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}-\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}\)
i. I= \(\frac{2+\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\frac{2-\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}\)
a)
\(\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{6}-\sqrt{2}}=\frac{\sqrt{3+1-2\sqrt{3.1}}}{\sqrt{2}(\sqrt{3}-1)}=\frac{\sqrt{(\sqrt{3}-1)^2}}{\sqrt{2}(\sqrt{3}-1)}=\frac{\sqrt{3}-1}{\sqrt{2}(\sqrt{3}-1)}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}\)
\(\sqrt{6+2\sqrt{5}-\sqrt{29-12\sqrt{5}}}=\sqrt{6+2\sqrt{5}-\sqrt{20+9-2\sqrt{20.9}}}\)
\(=\sqrt{6+2\sqrt{5}-\sqrt{(\sqrt{20}-3)^2}}=\sqrt{6+2\sqrt{5}-(\sqrt{20}-3)}\)
\(=\sqrt{9}=3\)
\(\Rightarrow P=\frac{\sqrt{2}}{2}+3\)
b)
\(\frac{2}{\sqrt{3}-1}-\frac{52}{3\sqrt{3}-1}+\frac{12}{3-\sqrt{3}}=\frac{2(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}-\frac{52(3\sqrt{3}+1)}{(3\sqrt{3}-1)(3\sqrt{3}+1)}+\frac{12(3+\sqrt{3})}{(3-\sqrt{3})(3+\sqrt{3})}\)
\(=\frac{2(\sqrt{3}+1)}{2}-\frac{52(3\sqrt{3}+1)}{26}+\frac{12(3+\sqrt{3})}{6}\)
\(=\sqrt{3}+1-2(3\sqrt{3}+1)+2(3+\sqrt{3})=9\sqrt{3}+9=5-3\sqrt{3}\)
\(\Rightarrow P=(5-3\sqrt{3})(5+3\sqrt{3})=-2\)
c)
\(P=\left[\frac{\sqrt{2}(\sqrt{2}+1)}{\sqrt{2}+1}+1\right]\left[\frac{\sqrt{2}(\sqrt{2}-1)}{\sqrt{2}-1}-1\right]\)
\(=(\sqrt{2}+1)(\sqrt{2}-1)=2-1=1\)
d)
\(P\sqrt{2}=\sqrt{18+2\sqrt{17}}-\sqrt{18-2\sqrt{17}}-2=\sqrt{17+1+2\sqrt{17.1}}-\sqrt{17+1-2\sqrt{17.1}}-2\)
\(=\sqrt{(\sqrt{17}+1)^2}-\sqrt{(\sqrt{17}-1)^2}-2=(\sqrt{17}+1)-(\sqrt{17}-1)-2=0\)
\(\Rightarrow P=0\)
đ)
\(2+\sqrt{4+\sqrt{6+2\sqrt{5}}}=2+\sqrt{4+\sqrt{5+1+2\sqrt{5.1}}}=2+\sqrt{4+\sqrt{(\sqrt{5}+1)^2}}\)
\(=2+\sqrt{4+\sqrt{5}+1}=2+\sqrt{5+\sqrt{5}}\)
\(\Rightarrow P=(2+\sqrt{5+\sqrt{5}})(\sqrt{10}-\sqrt{2})\), cái số này rút gọn không có ý nghĩa, sẽ ra số rất xấu, bạn xem lại đề.
e)
\(P=\frac{\sqrt{2}+\sqrt{3}+2+2+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{(\sqrt{2}+\sqrt{3}+\sqrt{4})+(\sqrt{4}+\sqrt{6}+\sqrt{8})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(\frac{(\sqrt{2}+\sqrt{3}+\sqrt{4})+\sqrt{2}(\sqrt{2}+\sqrt{3}+\sqrt{4})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{(\sqrt{2}+\sqrt{3}+\sqrt{4})(1+\sqrt{2})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1+\sqrt{2}\)
ê)
\(\sqrt{8+\sqrt{8}+\sqrt{20}+\sqrt{40}}=\sqrt{8+2\sqrt{2}+2\sqrt{5}+2\sqrt{10}}\)
\(=\sqrt{(2+5+2\sqrt{2.5})+1+2(\sqrt{2}+\sqrt{5})}\)
\(=\sqrt{(\sqrt{2}+\sqrt{5})^2+1+2(\sqrt{2}+\sqrt{5})}=\sqrt{(\sqrt{2}+\sqrt{5}+1)^2}=\sqrt{2}+\sqrt{5}+1\)
g)
\(13+\sqrt{48}=13+2\sqrt{12}=12+1+2\sqrt{12.1}=(\sqrt{12}+1)^2\)
\(\Rightarrow \sqrt{13+\sqrt{48}}=\sqrt{12}+1\)
\(\Rightarrow \sqrt{3+\sqrt{13+\sqrt{48}}}=\sqrt{4+\sqrt{12}}=\sqrt{3+1+2\sqrt{3.1}}=\sqrt{(\sqrt{3}+1)^2}=\sqrt{3}+1\)
\(\Rightarrow 2\sqrt{3-\sqrt{3+\sqrt{13+\sqrt{48}}}}=2\sqrt{2-\sqrt{3}}=\sqrt{2}.\sqrt{4-2\sqrt{3}}=\sqrt{2}.\sqrt{(\sqrt{3}-1)^2}\)
\(=\sqrt{2}(\sqrt{3}-1)=\sqrt{6}-\sqrt{2}\)
\(\Rightarrow G=1\)
h)
\(H=\frac{(\sqrt{2+\sqrt{3}})^2-(\sqrt{2-\sqrt{3}})^2}{\sqrt{(2-\sqrt{3})(2+\sqrt{3})}}=\frac{2+\sqrt{3}-(2-\sqrt{3})}{\sqrt{2^2-3}}=2\sqrt{3}\)
i)
\(I=\frac{2+\sqrt{3}}{2+\sqrt{3+1+2\sqrt{3.1}}}+\frac{2-\sqrt{3}}{2-\sqrt{3+1-2\sqrt{3.1}}}=\frac{2+\sqrt{3}}{2+\sqrt{(\sqrt{3}+1)^2}}+\frac{2-\sqrt{3}}{2-\sqrt{(\sqrt{3}-1)^2}}\)
\(=\frac{2+\sqrt{3}}{2+\sqrt{3}+1}+\frac{2-\sqrt{3}}{2-(\sqrt{3}-1)}=\frac{2+\sqrt{3}}{3+\sqrt{3}}+\frac{2-\sqrt{3}}{3-\sqrt{3}}\)
\(=\frac{(2+\sqrt{3})(3-\sqrt{3})+(2-\sqrt{3})(3+\sqrt{3})}{(3+\sqrt{3})(3-\sqrt{3})}=\frac{6}{6}=1\)