tìm x,y biết
\(\frac{3}{y}=\frac{7}{x}\)và x+16=y
Tìm 2 số x và y biết
a, \(\frac{x}{y}=\frac{15}{7}\) và x-2y = 16
b, \(\frac{x}{y}=\frac{8}{11};\frac{z}{y}=\frac{3}{11}\) và x + y - z = 80
c, \(\frac{x}{4}=\frac{y}{3};\frac{y}{6}=\frac{z}{11}\) và x.y.z = -528
a) \(\frac{x}{y}=\frac{15}{7}\Leftrightarrow\)\(\frac{x}{15}=\frac{y}{17}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{17}=\frac{x-2y}{15-2\cdot17}=\frac{16}{-19}\)
=> \(\begin{cases}x=-\frac{240}{19}\\y=-\frac{272}{19}\end{cases}\)
b) \(\frac{x}{y}=\frac{8}{11};\frac{z}{y}=\frac{3}{11}\)
\(\Leftrightarrow\)\(\frac{x}{8}=\frac{y}{11};\frac{z}{3}=\frac{y}{11}\)
\(\Leftrightarrow\)\(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}=\frac{x+y-z}{8+11-3}=\frac{80}{16}=5\)
\(\Rightarrow\begin{cases}x=40\\y=55\end{cases}\)
c) \(\frac{x}{4}=\frac{y}{3}\Rightarrow\)\(\frac{x}{8}=\frac{y}{6}\)
=> \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}\)
Đặt \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}=k\Rightarrow x=8k;y=6k;z=11k\)
Có \(xyz=-528\)
\(\Leftrightarrow8k\cdot6k\cdot11k=-528\)
\(\Leftrightarrow528\cdot k^3=-528\)
\(\Leftrightarrow k^3=-1\Leftrightarrow k=-1\)
Với k=-1 thì : x=-8;y=-6;x=-11
a) Từ \(\frac{x}{y}=\frac{15}{7}\Rightarrow\frac{x}{15}=\frac{y}{7}\)
Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\frac{x}{15}=\frac{y}{7}=\frac{x-2y}{15-14}=16\)
=> \(\begin{cases}x=240\\y=112\end{cases}\)
b) Từ \(\frac{x}{y}=\frac{8}{11}\Rightarrow\frac{x}{8}=\frac{y}{11}\)
\(\frac{z}{y}=\frac{3}{11}\Rightarrow\frac{z}{3}=\frac{y}{11}\)
=> \(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}=\frac{x+y-z}{8+11-3}=\frac{80}{16}=5\)
=> \(\begin{cases}x=40\\y=55\\z=15\end{cases}\)
c)Từ \(\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{6}\)
=> \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}\)
Đặt \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}\) = k
=> \(\begin{cases}x=8k\\y=6k\\z=11k\end{cases}\)
=> x.y.z = -528 => 8k.6k.11k = -528 => 528k3 = -528
=> k3 = -1 => k = -1
=> \(\begin{cases}x=-8\\y=-6\\z=-11\end{cases}\)
À ! sorry mấy bn nha đề bài là tìm x,y, z nhưng mik ghi nhầm đề bài
1, Tìm các số tự nhiên x,y biết \(\frac{3+x}{5+y}=\frac{3}{5}\) và \(x+y=16\)
2, Hỏi như 1 biết \(\frac{x-7}{y-6}=\frac{7}{6}\) và \(x-y=\left(-4\right)\)
1. Ta có: \(\frac{3+x}{5+y}=\frac{3}{5}\Leftrightarrow\hept{\begin{cases}3+x=3k\\5+y=5k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\left(k-1\right)\\y=5\left(k-1\right)\end{cases}}\)
\(\Rightarrow x+y=3\left(k-1\right)+5\left(k-1\right)=\left(3+5\right)\left(k-1\right)\)
\(\Rightarrow8\left(k-1\right)=16\)
\(\Leftrightarrow k-1=16\div8\)
\(\Leftrightarrow k-1=2\)
\(\Leftrightarrow k=2+1\)
\(\Leftrightarrow k=3\)
\(\Rightarrow\hept{\begin{cases}x=3.3-3=6\\y=5.3-5=10\end{cases}}\)
Vậy x = 6 và y = 10
Với \(\frac{3+x}{5+y}=\frac{3}{5}\Leftrightarrow x=3a;y=5a\left(1\right)\)
Ta có :
\(x+y=3a+5a\)
hay \(16=3a+5a\)
\(\Leftrightarrow16=8a\)
\(\Leftrightarrow a=2\left(2\right)\)
Thay ( 2 ) vào ( 1 ) . Ta có :
\(x=3.2;y=5.2\)
\(\Leftrightarrow x=6;y=10\)
Vậy x = 6; y=10
2. Ta có: \(\frac{x-7}{y-6}=\frac{7}{6}\Leftrightarrow\hept{\begin{cases}x-7=7k\\y-6=6k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7\left(k+1\right)\\y=6\left(k+1\right)\end{cases}}\)
\(\Rightarrow x-y=7\left(k+1\right)-6\left(k+1\right)=\left(7-6\right)\left(k+1\right)\)
\(\Rightarrow k+1=-4\)
\(\Leftrightarrow k=-4-1\)
\(\Leftrightarrow k=-5\)
\(\Rightarrow\hept{\begin{cases}x=7.\left(-5\right)+7=-28\\y=6.\left(-5\right)+6=-24\end{cases}}\)
Vậy x = -28, y = -24
tìm x; y
\(\frac{3}{y}=\frac{7}{x}\) và x+16=y
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
\(\frac{3}{y}=\frac{7}{x}\Rightarrow\frac{x}{7}=\frac{y}{3}=\frac{x+16}{3}\)
\(=\frac{x+16-x}{3-7}=\frac{16}{-4}=-4\)
\(\Rightarrow\hept{\begin{cases}x=\left(-4\right).7=-28\\y=\left(-4\right).3=-12\end{cases}}\)
Ta có: x + 16 = y (1)
Thay (1) vào biểu thức 3/y = 7/x, ta có:
3/x+16 = 7/x
=> 3x = 7(x+16)
=> 3x = 7x + 112
=> 3x - 7x = 112
=> -4x = 112
=> x = -28
Với x = -28 => y = -28 + 16 = -12
Vậy x = -28; y = -12
Tìm hai số x và y, biết:
\(\frac{x}{3}=\frac{7}{5}\) và x + y = 16
Giúp với :v
Với x/3=y/5..
=>x*5=y*3 (theo tính chất)
=>x=y*3:5
=>x=y*3/5.
Mà x+y=16.
=>x=16:(3+5)*3=6.
y=16-6=10.
Vậy x=6 và y=10/
\(\frac{x}{3}=\frac{7}{5}\Rightarrow x=\frac{3\cdot7}{5}=4,2\)
thay x=4,2 vào x+y=16, ta được:
\(4,2+y=16\)
\(\Rightarrow y=16-4,2\)
\(\Rightarrow y=11,8\)
vậy x=4,2; y=11,8
Tìm x và y, biết : \(\frac{x}{3}=\frac{y}{5}\) và x + y = 16
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{16}{8}=2\)
Nên : \(\frac{x}{3}=2\Rightarrow x=6\)
\(\frac{y}{5}=2\Rightarrow y=10\)
Vậy x = 6 ; y = 10
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
3 x = 5 y = 3 + 5 x + y = 8 16 = 2
Nên : 3 x = 2
⇒x = 6
x/3=y/5
=x+y/3+5
=16/8+2
=x/3=2 và y/5=2
=x=6 và y=10
Tìm \(\frac{x}{y}\)biết
a) \(\frac{x}{y}.\frac{3}{7}=\frac{4}{9}\)
b) \(\frac{16}{15}:\frac{x}{y}=\frac{3}{7}\)
a) \(\frac{x}{y}.\frac{3}{7}=\frac{4}{9}\)
\(\frac{x}{y}=\frac{4}{9}:\frac{3}{7}\)
\(\frac{x}{y}=\frac{4}{9}.\frac{7}{3}\)
\(\frac{x}{y}=\frac{28}{27}\)
Tìm ba số x,y,z biết: \(\frac{x}{5} = \frac{y}{7} = \frac{z}{9}\) và x – y + z = \(\frac{7}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\begin{array}{l}\frac{x}{5} = \frac{y}{7} = \frac{z}{9} = \frac{{x - y + z}}{{5 - 7 + 9}} = \frac{{\frac{7}{3}}}{7} = \frac{7}{3}.\frac{1}{7} = \frac{1}{3}\\ \Rightarrow x = 5.\frac{1}{3} = \frac{5}{3};\\y = 7.\frac{1}{3} = \frac{7}{3};\\z = 9.\frac{1}{3} = \frac{9}{3} = 3.\end{array}\)
Vậy \(x = \frac{5}{3};y = \frac{7}{3};z = 3\)
Tìm x,y,z biết \(\frac{3}{7}x=\frac{16}{26}y=\frac{6}{19}z\) ; 2x-y-z=-6
1. Tìm các số x, y, z biết rằng:\(\frac{x}{5}=\frac{y}{6},\frac{y}{8}=\frac{z}{7}\) và x + y - z = 69
2. Tìm các số x, y, z biết rằng: \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\) và 5z - 3x - 4y = 50
3. Tìm các số x, y, z, t biết rằng:
x: y: z : t = 15: 7 :3 :1 và x - y + z - t = 10
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405