Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Vũ Long Lê
Xem chi tiết
Phùng Khánh Linh
18 tháng 8 2018 lúc 21:35

\(P=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1=\dfrac{\sqrt{a}\left(a\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-2\sqrt{a}-1+1=a+\sqrt{a}-2\sqrt{a}=a-\sqrt{a}\)

Cao Thu Anh
Xem chi tiết
Shinichi Kudo
6 tháng 4 2018 lúc 21:13

Bài 2:

a, ĐKXĐ: \(x\ne\pm1;x\ne\dfrac{-1}{2}\)

\(P=\left(\dfrac{x-1}{x+1}-\dfrac{x}{x-1}-\dfrac{3x+1}{1-x^2}\right):\dfrac{2x+1}{x^2-1}\)

\(P=\left(\dfrac{x-1}{x+1}-\dfrac{x}{x-1}+\dfrac{3x+1}{x^2-1}\right).\dfrac{x^2-1}{2x+1}\)

\(P=\dfrac{\left(x-1\right)^2-x\left(x+1\right)+3x+1}{\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{2x+1}\)

\(P=\dfrac{x^2-2x+1-x^2-x+3x+1}{\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{2x+1}\)

\(P=\dfrac{2}{2x+1}\)

b, ĐKXĐ: \(x\ne\pm1;x\ne\dfrac{-1}{2}\)

Để \(P=\dfrac{3}{x-1}\Leftrightarrow\dfrac{2}{2x+1}=\dfrac{3}{x-1}\Leftrightarrow2\left(x-1\right)=3\left(2x+1\right)\)

\(\Leftrightarrow2x-2=6x+3\)\(\Leftrightarrow-4x=5\Leftrightarrow x=\dfrac{-5}{4}\)(TMĐK)

c, \(ĐKXĐ:x\ne\pm1;x\ne\dfrac{-1}{2}\)

Để \(P\in Z\Leftrightarrow\dfrac{2}{2x+1}\in Z\Leftrightarrow2x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

+) Với \(2x+1=1\Leftrightarrow x=0\left(TMĐK\right)\)

+) Với \(2x+1=-1\Leftrightarrow x=-1\left(KTMĐK\right)\)

+) Với \(2x+1=2\Leftrightarrow x=\dfrac{1}{2}\left(TMĐK\right)\)

+) Với \(2x+1=-2\Leftrightarrow x=\dfrac{-3}{2}\left(TMĐK\right)\)

Vậy để \(P\in Z\Leftrightarrow x\in\left\{0;\dfrac{1}{2};\dfrac{-3}{2}\right\}\)

rgrgvwevedgwgr
Xem chi tiết
hattori heiji
17 tháng 2 2018 lúc 22:13

Vì a+b+c=0. Suy ra

* a+b=-c

=> (a+b)2=c2

=> a2+b2+2ab=c2

=>a2+b2-c2=-2ab

tương tự ta đc a2+c2-b2=-2ac và c2+b2-a2=-2bc

Ta có

A=\(\dfrac{1}{a^2+c^2-a^2}+\dfrac{1}{c^2+a^2-b^2}+\dfrac{1}{a^2+b^2-c^2}\)

=>\(A=\dfrac{-1}{2bc}-\dfrac{1}{2ac}-\dfrac{1}{2ab}\)

=>A=\(\dfrac{-a}{2abc}-\dfrac{b}{2abc}-\dfrac{c}{2abc}\)

=>A=\(\dfrac{-a-b-c}{2abc}=\dfrac{-\left(a+b+c\right)}{2abc}\)

=>\(\dfrac{0}{2abc}=0\) (vì a+b+c=0)

vậy A=0

Kathy Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 1 2019 lúc 6:09

\(P=\dfrac{\left(\sqrt{a+1}+1\right)\left(\sqrt{a+1}+2\right)}{\left(\sqrt{a+1}-2\right)\left(\sqrt{a+1}+2\right)}+\dfrac{2\sqrt{a+1}\left(\sqrt{a+1}-2\right)}{\left(\sqrt{a+1}-2\right)\left(\sqrt{a+1}+2\right)}-\dfrac{2+5\sqrt{a+1}}{a-3}\)

\(P=\dfrac{a+3+3\sqrt{a+1}}{a-3}+\dfrac{2a+2-4\sqrt{a+1}}{a-3}-\dfrac{2+5\sqrt{a+1}}{a-3}\)

\(P=\dfrac{a+3+3\sqrt{a+1}+2a+2-4\sqrt{a+1}-2-5\sqrt{a+1}}{a-3}\)

\(P=\dfrac{3a+3-6\sqrt{a+1}}{a-3}\)

Có thể dừng ở đây hoặc nếu thích thì làm tiếp như sau (chưa chắc gọn hơn):

\(P=\dfrac{3\left(a+1\right)-6\sqrt{a+1}}{\left(\sqrt{a+1}-2\right)\left(\sqrt{a+1}+2\right)}=\dfrac{3\sqrt{a+1}\left(\sqrt{a+1}-2\right)}{\left(\sqrt{a+1}-2\right)\left(\sqrt{a+1}+2\right)}\)

\(P=\dfrac{3\sqrt{a+1}}{\sqrt{a+1}-2}\)

Vũ Thảo Anh
Xem chi tiết
rgrgvwevedgwgr
Xem chi tiết
Đinh Đức Hùng
19 tháng 2 2018 lúc 17:26

Từ \(a+b+c=0\Rightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2+2ab+b^2=c^2\\a^2+2ac+c^2=b^2\\b^2+2bc+c^2=a^2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a^2+b^2-c^2=-2ab\\a^2+c^2-c^2=-2ac\\b^2+c^2-a^2=-2bc\\\end{matrix}\right.\)

\(\Rightarrow A=\dfrac{1}{-2ab}+\dfrac{1}{-2ac}+\dfrac{1}{-2bc}=\dfrac{a+b+c}{-2abc}=\dfrac{0}{-2abc}=0\)

Anh Nguyen Van
Xem chi tiết
Akai Haruma
16 tháng 8 2018 lúc 23:25

Lời giải:

ĐK: \(a\geq 0; a\neq 1\)

Ta có:

\(P=\frac{1}{2(1+\sqrt{a})}+\frac{1}{2(1-\sqrt{a})}-\frac{a^2+2}{1-a^2}\)

\(=\frac{(1-\sqrt{a})+(1+\sqrt{a})}{2(1+\sqrt{a})(1-\sqrt{a})}-\frac{a^2+2}{1-a^2}\)

\(=\frac{1}{1-a}-\frac{a^2+2}{1-a^2}\)

\(=\frac{1+a}{(1-a)(1+a)}-\frac{a^2+2}{(1-a)(1+a)}=\frac{1+a-(a^2+2)}{(1-a)(1+a)}\)

\(=\frac{a^2-a+1}{a^2-1}\)

b)

\(P=\frac{7}{8}\Leftrightarrow \frac{a^2-a+1}{a^2-1}=\frac{7}{8}\)

\(\Rightarrow 8(a^2-a+1)=7(a^2-1)\)

\(\Leftrightarrow a^2-8a+15=0\Rightarrow \left[\begin{matrix} a=5\\ a=3\end{matrix}\right.\) (đều thỏa mãn)

Giúp mik với mấy bn ơi C...
Xem chi tiết
Cá Biển
19 tháng 10 2021 lúc 7:16

B

nguyen quynh
Xem chi tiết
Nguyễn Thị Ngọc Hân
26 tháng 5 2021 lúc 22:22

\(A=\dfrac{-\left(\sqrt{x}+1\right)\left(2+\sqrt{x}\right)-2\sqrt{x}\left(2-\sqrt{x}\right)+5\sqrt{x}+2}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\dfrac{\sqrt{x}\left(3-\sqrt{x}\right)}{\left(\sqrt{x}+2\right)^2}\)

\(A=\dfrac{-3\sqrt{x}-x-2-4\sqrt{x}+2x+5\sqrt{x}+2}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}\left(3-\sqrt{x}\right)}\)

\(A=\dfrac{-x-2\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}\left(3-\sqrt{x}\right)}\)

\(A=\dfrac{-\sqrt{x}\left(\sqrt{x}+2\right)^3}{\left(\sqrt{x}+2\right)\left(2-\sqrt{x}\right)\sqrt{x}\left(3-\sqrt{x}\right)}=\dfrac{-\left(\sqrt{x}+2\right)^2}{\left(2-\sqrt{x}\right)\left(3-\sqrt{x}\right)}\)

 

Etermintrude💫
26 tháng 5 2021 lúc 22:30

undefined

CHÚC BẠN HỌC TỐT NHÉvui

Nguyễn Thị Ngọc Hân
26 tháng 5 2021 lúc 22:32

\(A=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x+2}\right)^2}{-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)\sqrt{x}\left(3-\sqrt{x}\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)