Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Linh Phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 9 2021 lúc 15:36

\(\left(x+1\right)\left(x^2+x+1\right)\left(x-1\right)\left(x^2-x+1\right)\)

\(=\left(x^3-1\right)\left(x^3+1\right)\)

\(=x^6-1\)

Linh Phương
Xem chi tiết
Nguyễn Hoàng Minh
23 tháng 9 2021 lúc 12:12

\(=\left[\left(x-1\right)\left(x^2+x+1\right)\right]\left[\left(x+1\right)\left(x^2-x+1\right)\right]\\ =\left(x^3-1\right)\left(x^3+1\right)\\ =x^6-1\)

Emmaly
23 tháng 9 2021 lúc 12:14

(x+1)(x2+x+1)(x-1)(x2-x+1)
\(\left(x+1\right)\left(x^2-x+1\right)\left(x-1\right)\left(x^2+x+1\right)=\left(x^3+1\right)\left(x^3-1\right)=\left(x^3\right)^2-1=x^6-1\)

Đã Ẩn
Xem chi tiết
Thu Thao
12 tháng 12 2020 lúc 16:29

Bạn chú ý đăng lẻ câu hỏi! 1/

a/ \(=x^3-2x^5\)

b/\(=5x^2+5-x^3-x\)

c/ \(=x^3+3x^2-4x-2x^2-6x+8=x^3=x^2-10x+8\)

d/ \(=x^2-x^3+4x-2x+2x^2-8=3x^2-x^3+2x-8\)

e/ \(=x^4-x^2+2x^3-2x\)

f/ \(=\left(6x^2+x-2\right)\left(3-x\right)=17x^2+5x-6-6x^3\)

Vũ Việt Hoàn
11 tháng 12 lúc 21:24

cmm

 

Thao Cao Phuong
Xem chi tiết
Lý Bá Đức Thịnh
19 tháng 9 2023 lúc 21:55

a)-(x-y)(x2+xy-1)=-(x3+x2y-x-x2y-xy2+y)

                          =-(x3-xy2-x+y)

                          =-x3+xy2+x-y

b)x2(x-1)-(x3+1)(x-y)=x3-x2-x3+x2y-x+y

                                =-x2+x2y-x+y

c)(3x-2)(2x-1)+(-5x-1)(3x+2)=6x2-3x-4x+2-15x2-10x-3x-2

                                             =-9x2-20x

d) hình như bạn ghi lỗi

Bài 2: C=x(x2-y)-x2(x+y)+y(x2-x)

             =x3-xy-x3-x2y+x2y-xy

             =-2xy

Thay x=1/2,y=-1 vào C, ta có:

        C=-2.1/2.(-1)=1

Vậy C=1 khi x=1/2 và y=-1.

pham ngoc anh
Xem chi tiết
Nguyễn Hoàng Minh
10 tháng 9 2021 lúc 10:15

\(a,=x+x^2-x^3+x^4-x^5+1+x-x^2+x^3-x^4-x-x^2+x^3-x^4+x^5+1+x-x^2+x^3-x^4\\ =2x-2x^2+2x^3-2x^4\)

~~~~
Xem chi tiết
Nguyễn Hoàng Minh
22 tháng 11 2021 lúc 15:45

\(1,\\ 12x^6y^3:4x^3y=3x^3y^2\\ \left(x+1\right)\left(x^2-x+1\right)=x^3+1\\ 2x^2y\left(x^2+3xy\right)=3x^4y+6x^3y^2\\ 2,\\ a,=2xy\left(2x+3y-4\right)\\ b,=\left(x-3\right)\left(x+y\right)\\ c,=\left(x-2\right)\left(x+2\right)+y\left(x-2\right)=\left(x+y+2\right)\left(x-2\right)\\ d,=x^2-2x-5x+10=\left(x-2\right)\left(x-5\right)\\ 3,\\ a,\Leftrightarrow x^2-x^2+2x=2\\ \Leftrightarrow2x=2\Leftrightarrow x=1\\ b,\Leftrightarrow\left(x-2\right)\left(x-2+1\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Kwalla
Xem chi tiết
Toru
30 tháng 9 2023 lúc 16:29

a) \(\dfrac{1}{x+2}+\dfrac{5}{2x^2+3x-2}\)

\(=\dfrac{1}{x+2}+\dfrac{5}{2x^2+4x-x-2}\)

\(=\dfrac{2x-1}{\left(2x-1\right)\left(x+2\right)}+\dfrac{5}{2x\left(x+2\right)-\left(x+2\right)}\)

\(=\dfrac{2x-1+5}{\left(2x-1\right)\left(x+2\right)}\)

\(=\dfrac{2x+4}{\left(2x-1\right)\left(x+2\right)}\)

\(=\dfrac{2\left(x+2\right)}{\left(2x-1\right)\left(x+2\right)}\)

\(=\dfrac{2}{2x-1}\)

\(---\)

b) \(\dfrac{-3x^2}{x^3+1}+\dfrac{1}{x^2-x+1}+\dfrac{1}{x+1}\) (sửa đề)

\(=\dfrac{-3x^2}{\left(x+1\right)\left(x^2-x+1\right)}+\dfrac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\dfrac{x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{-3x^2+x+1+x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{-2x^2+2}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{-2\left(x^2-1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{-2\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{-2x+2}{x^2-x+1}\)

\(---\)

c) \(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}\)

\(=\dfrac{1+x}{\left(1-x\right)\left(1+x\right)}+\dfrac{1-x}{\left(1-x\right)\left(1+x\right)}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}\)

\(=\dfrac{1+x+1-x}{1^2-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}\)

\(=\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}\)

\(=\dfrac{2\left(1+x^2\right)}{\left(1-x^2\right)\left(1+x^2\right)}+\dfrac{2\left(1-x^2\right)}{\left(1-x^2\right)\left(1+x^2\right)}+\dfrac{4}{1+x^4}\)

\(=\dfrac{2+2x^2+2-2x^2}{1-x^4}+\dfrac{4}{1+x^4}\)

\(=\dfrac{4}{1-x^4}+\dfrac{4}{1+x^4}\)

\(=\dfrac{4\left(1+x^4\right)}{\left(1-x^4\right)\left(1+x^4\right)}+\dfrac{4\left(1-x^4\right)}{\left(1-x^4\right)\left(1+x^4\right)}\)

\(=\dfrac{4+4x^4+4-4x^4}{1-x^8}\)

\(=\dfrac{8}{1-x^8}\)

#\(Toru\)

⭐Hannie⭐
30 tháng 9 2023 lúc 16:32

\(\dfrac{1}{x+2}+\dfrac{5}{2x^2+3x-2}\\ =\dfrac{1}{x+2}+\dfrac{5}{\left(2x-1\right)\left(x+2\right)}\\ =\dfrac{2x-1}{\left(2x-1\right)\left(x+2\right)}+\dfrac{5}{\left(2x-1\right)\left(x+2\right)}\\ =\dfrac{2x-1+5}{\left(2x-1\right)\left(x+2\right)}\\ =\dfrac{2x+4}{\left(2x-1\right)\left(x+2\right)}\\ =\dfrac{2\left(x+2\right)}{\left(2x-1\right)\left(x+2\right)}\\ =\dfrac{2}{2x-1}\)

__

`x^3+1` chứ cậu nhỉ?

\(\dfrac{-3x^2}{x^3+1}+\dfrac{1}{x^2-x+1}+\dfrac{1}{x+1}\\ =\dfrac{-3x^2}{\left(x+1\right)\left(x^2-x+1\right)}+\dfrac{1}{x^2-x+1}+\dfrac{1}{x+1}\\ =\dfrac{-3x^2}{\left(x+1\right)\left(x^2-x+1\right)}+\dfrac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\dfrac{x^2-x+1}{\left(x-1\right)\left(x^2-x+1\right)}\\ =\dfrac{-3x^2+x+1+x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\\ =\dfrac{-2x^2+2}{\left(x+1\right)\left(x^2-x+1\right)}\\ =\dfrac{-2\left(x^2-1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{-2\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\\ =\dfrac{-2\left(x-1\right)}{x^2-x+1}\)

__

 

Trà My Phạm
Xem chi tiết
Trà My Phạm
12 tháng 12 2021 lúc 20:15

cứuuuuuuuuuuu

 

Thư Phạm
Xem chi tiết
Nguyễn Hoàng Minh
17 tháng 9 2021 lúc 7:46

\(1,=\left(x+3\right)\left(x-2\right):\left(x+3\right)=x-2\\ 2,=\left(x-5\right)\left(x+6\right):\left(x+6\right)=x-5\\ 3,=\left[3x\left(2x-1\right)-5\right]:\left(2x-1\right)=3x.dư.\left(-5\right)\)

Lấp La Lấp Lánh
17 tháng 9 2021 lúc 7:47

1)\(\left(x+x^2-6\right):\left(x+3\right)=\left[x\left(x+3\right)-2\left(x+3\right)\right]:\left(x+3\right)=\left[\left(x+3\right)\left(x-2\right)\right]:\left(x+3\right)=x-2\)

2) \(\left(x+x^2-30\right):\left(x+6\right)=\left[x\left(x+6\right)-5\left(x+6\right)\right]:\left(x+6\right)=\left[\left(x+6\right)\left(x-5\right)\right]:\left(x+6\right)=x-5\)

3) \(\left(5-3x+6x^2\right):\left(2x-1\right)=\left[3x\left(2x-1\right)+5\right]:\left(2x-1\right)=3x+\dfrac{5}{2x-1}\)

Mai Enk
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 12 2021 lúc 20:05

b: \(=\dfrac{x-2+x+6}{\left(x-2\right)\left(x+2\right)}=\dfrac{2}{x-2}\)