Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
#Biinz_Tổng
Xem chi tiết
Nguyễn Tấn Phát
22 tháng 1 2020 lúc 12:45

\(\text{CM vô nghiệm}\)
\(\text{a) }\left(x-2\right)^3=\left(x-2\right).\left(x^2+2x+4\right)-6\left(x-1\right)^2\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6\left(x^2-2x+1\right)\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6x^2+12x-6\)
\(\Leftrightarrow x^3-6x^2+12x-x^3+6x-12x=-8+8-6\)
\(\Leftrightarrow0x=-6\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)

\(\text{b) }4x^2-12x+10=0\)
\(\Leftrightarrow\left(4x^2-12x+9\right)+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2=-1\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)

\(\text{CM vô số nghiệm}\)
       \(\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)^3-3x\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left[\left(x+1\right)^2-3x\right]\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2+2x+1-3x\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2-x+1\right)\text{ (luôn luôn đúng)}\)
\(\text{Vậy }S\inℝ\)

Khách vãng lai đã xóa
Phú Tuyên Nguyễn
Xem chi tiết
Lương Đại
2 tháng 4 2022 lúc 10:07

Câu 1 : A

Câu 2 : D

Đỗ Sử Nam Phương
Xem chi tiết
missing you =
26 tháng 11 2021 lúc 19:06

\(a,x^2-\left(2m-3\right)x+m^2=0-vô-ngo\)

\(\Leftrightarrow\Delta< 0\Leftrightarrow[-\left(2m-3\right)]^2-4m^2< 0\Leftrightarrow m>\dfrac{3}{4}\)

\(b,\left(m-1\right)x^2-2mx+m-2=0\)

\(m-1=0\Leftrightarrow m=1\Rightarrow-2x-1=0\Leftrightarrow x=-0,5\left(ktm\right)\)

\(m-1\ne0\Leftrightarrow m\ne1\Rightarrow\Delta'< 0\Leftrightarrow\left(-m\right)^2-\left(m-2\right)\left(m-1\right)< 0\Leftrightarrow m< \dfrac{2}{3}\)

\(c,\left(2-m\right)x^2-2\left(m+1\right)x+4-m=0\)

\(2-m=0\Leftrightarrow m=2\Rightarrow-6x+2=0\Leftrightarrow x=\dfrac{1}{3}\left(ktm\right)\)

\(2-m\ne0\Leftrightarrow m\ne2\Rightarrow\Delta'< 0\Leftrightarrow[-\left(m+1\right)]^2-\left(4-m\right)\left(2-m\right)< 0\Leftrightarrow m< \dfrac{7}{8}\)

 

 

 

Nguyễn đăng long
Xem chi tiết
Lập_😘💗
5 tháng 2 2021 lúc 14:54

a) 2(x+1)=2x-1

<=> 2x+2=2x-1

<=> 2x+2-2x+1=0

<=>1=0

=>Pt vô nghiệm

phamthiminhanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 1 2023 lúc 9:49

Bài 2:

a: TH1: m=0

=>-x+1=0

=>x=-1(nhận)

TH2: m<>0

\(\text{Δ}=\left(m-1\right)^2-4m\left(1-m\right)\)

=m^2-2m+1-4m+4m^2

=5m^2-6m+1

=(2m-1)(3m-1)

Để phương trình có nghiệm thì (2m-1)(3m-1)>=0

=>m>=1/2 hoặc m<=1/3

b: Để phương trình có hai nghiệm phân biệt thì (2m-1)(3m-1)>0

=>m>1/2 hoặc m<1/3

c: Để phương trình có hai nghiệmtrái dấu thì (1-m)*m<0

=>m(m-1)>0

=>m>1 hoặc m<0

d: Để phương trình có hai nghiệm dương phân biệt thì

\(\left\{{}\begin{matrix}m\in\left(-\infty;\dfrac{1}{3}\right)\cup\left(\dfrac{1}{2};+\infty\right)\\\dfrac{-m+1}{m}>0\\\dfrac{1-m}{m}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left(-\infty;\dfrac{1}{3}\right)\cup\left(\dfrac{1}{2};+\infty\right)\\0< m< 1\end{matrix}\right.\)

=>1/2<m<1

Phạm Hương Giang
Xem chi tiết
Nguyệt
13 tháng 1 2019 lúc 20:58

\(\left|x-2\right|+\left|x^2-4x+3\right|=0\)

\(\hept{\begin{cases}\left|x-2\right|\ge0\\\left|x^2-4x+3\right|\ge0\end{cases}\text{dấu }=\text{xảy ra khi }}\)

\(\hept{\begin{cases}\left|x-2\right|=0\\\left|x^2-4x+3\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x-2=0\\x^2-4x+3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\\left(x-1\right).\left(x-3\right)=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\x=1,x=3\end{cases}}}\)(vô lí)

Vậy phương trình vô nghiệm

p/s: mk ko bt cách trình bài => sai sót bỏ qua

8/11-22-Đặng Bảo Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2021 lúc 10:28

Bài 1: 

b: \(\Leftrightarrow x-2=0\)

hay x=2

Nguyễn Thanh Thủy
Xem chi tiết
Ngô Chi Lan
17 tháng 3 2021 lúc 22:04

Ta có:\(1+x+x^2+x^3+...+x^{2020}=0\)

\(\Leftrightarrow1+\left(x+x^2\right)+\left(x^3+x^4\right)+...+\left(x^{2019}+x^{2020}\right)=0\)

Mà \(x+x^2\ge0\forall x\)

\(x^3+x^4\ge0\forall x\)

........

\(x^{2019}+x^{2020}\ge0\forall x\)

\(\Leftrightarrow1+\left(x+x^2\right)+\left(x^3+x^4\right)+...+\left(x^{2019}+x^{2020}\right)\ge1\forall x\)

Theo bài ra:\(1+\left(x+x^2\right)+\left(x^3+x^4\right)+...+\left(x^{2019}+x^{2020}\right)=0\)

\(\Rightarrow\)Vô nghiệm

Khách vãng lai đã xóa
Dương Công Huy
Xem chi tiết
Inequalities
12 tháng 2 2020 lúc 12:03

a) Ta có: \(x^2+2x+3\)

\(=\left(x^2+2x+1\right)+2\)

\(=\left(x+1\right)^2+2>0\)

Vậy pt vô nghiệm

Khách vãng lai đã xóa
Inequalities
12 tháng 2 2020 lúc 12:03

b) Ta có \(x^2+2x+4\)

\(=\left(x^2+2x+1\right)+3\)

\(=\left(x+1\right)^2+3>0\)

Vậy pt vô nghiệm

Khách vãng lai đã xóa
Hoang Nguyen
Xem chi tiết
như ý phạm
23 tháng 4 2015 lúc 19:02

pt<=>x^2-2x.1/2+1/4-1/4+12/4=0

<=> (x-1/2)^2+11/4>=11/4>0

=>phương trình vô nghiệm

Nguyễn Thị Kiểm
29 tháng 11 2016 lúc 23:02

Ta có : x^2 - x +3 = 0 

     <=>x(x-1)=-3

    Vì x(x-1) là 2 số tự nhiên liên tiếp nên chia hết cho 2 

 Mà 3 không chia hết cho 2 

=> vậy phương trình trên vô nghiệm