Cho tam giác ABC nhọn, trung tuyến AD. Kẻ DN song song với AB (N ∈ AC). Kẻ DM song song với AC (M ∈ AB). MN cắt AD tại O.
a) Chứng minh A và D đối xứng với nhau qua điểm O.
b) Tính độ dài MN khi BC = 16cm.
Cho tam giác ABC nhọn, trung tuyến AD. Kẻ DN song song với AB (N ∈ AC). Kẻ DM song song với AC (M ∈ AB). MN cắt AD tại O.
a) Chứng minh A và D đối xứng với nhau qua điểm O.
b) Tính độ dài MN khi BC = 16cm.
a: Xét tứ giác AMDN có
AM//DN
AN//DM
Do đó: AMDN là hình bình hành
=>Hai đường chéo AD và MN cắt nhau tại trung điểm của mỗi đường
hay A và D đối xứng nhau qua O
cho tam giác ABC nhọn , trung tuyến AD. kẻ DN // AB ( N thuộc AC ) . MN cắt AD tại O.
a) chứng minh A và D đối xứng với nhau qua O
b) tính độ dài MN khi BC = 16
Cho tam giác ABC nhọn, trung tuyến AD. Kẻ DN//AB, DM//AC. MN cắt AD tại O.
a. C/m A và D đối xứng vs nhau qua điểm O.
b/ Tính độ dài MN khi bt BC=16cm
Cho tam giác ABC cân tại A và D là một điểm thuộc cạnh BC. Kẻ DM song song với AB (M thuộc AC), DN song song với AC (N thuộc AB). Gọi D' là điểm đối xứng của D qua MN. Tìm quỹ tích điểm D' khi điểm D di động trên BC.
Điểm quỹ tích của D' là BC
Điểm quỹ tích của D' là BC
a: Xét tứ giác AMDN có
AM//DN
AN//DM
Do đó: AMDN là hình bình hành
=>Hai đường chéo AD và MN cắt nhau tại trung điểm của mỗi đường
hay A và D đối xứng nhau qua O
Cho tam giác ABC điểm D thuộc cạnh BC. Từ D kẻ đường thẳng song song với cạnh AB, cắt cạnh AC tại E và đường thẳng qua D song song với AC cắt AB tai F. Chứng minh hai điểm E và F đối xứng với nhau qua trung điểm I của đoạn thẳng AD
Ta chứng minh được AEDF là hình bình hành Þ AD Ç È = I. I là trung điểm của AD và EF. Suy ra E đối xứng với F qua I
Cho tam giác ABC vuông tại A (AB<AC) trên tia đối của tia AB lấy điểm D sao cho AD =AB. chứng minh tam giác ABC = tam giác ADC. Gọi M là trung điểm BC đường thẳng qua B và song song với CD cắt DM tại K chứng minh BK = CD. Qua A kẻ đường thẳng song song với BC cắt CD tại M chứng minh tam giác AMC cân
Mk thấy đề sai hay sao ý ko có đường thẳng nào đi qua B song song vs CD và cắt DM cả
mik thấy cô ghi đè s mik ghi lại y chang chứ mik ko bik j cả. mik đọc cx thấy sai sai cái j á mà ko bik mik đọc đè đúng hay là sai nên mik mới đăng
Hỏi lại cô cậu xem chứ mk tháy đè sai rồi đó
Cho tam giác ABC vuông tại A ( AB<AC ) có AD là đường trung tuyến, M và E là trung điểm của AB, AC. Gọi N đối xứng E qua M
a) Chứng minh : tứ giác AEBN là hbh
b) Qua C kẻ đường thẳng song song với AD cắt DE ở H. Chứng minh tứ giác ADCH là hình thoi
=> Giúp e câu b với ạ
a) Xét tứ giác AEBN:
+ M là trung điểm của AB (gtt).
+ M là trung điểm của EN (N đối xứng E qua M).
=> Tứ giác AEBN là hình bình hành (dhnb).
b) Xét tam giác ABC vuông tại A: AD là trung tuyến (gt).
=> AD = CD = \(\dfrac{1}{2}\) BC (Tính chất đường trung tuyến trong tam giác vuông).
Xét tam giác HEC và tam giác DEA:
+ EC = EA (E là trung điểm của AC).
+ \(\widehat{HEC}=\widehat{DEA}\) (đối đỉnh).
+ \(\widehat{HCE}=\widehat{DAE}\) (AD // HC).
=> Tam giác HEC = Tam giác DEA (c - g - c).
Xét tứ giác ADCH:
+ AD // HC (gt).
+ AD = HC (Tam giác HEC = Tam giác DEA).
=> Tứ giác ADCH là hình bình hành (dhnb).
Mà AD = CD (cmt).
=> Tứ giác ADCH là hình thoi (dhnb).
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Qua M kẻ đường thẳng song song với AB cắt AC tại N và kẻ đường thẳng song song với AC cắt AB tại K
a. Chứng minh rằng tứ giác AKMN là hình chữ nhật.
b. Điểm E đối xứng với M qua K, Q đối xứng với M qua N. Chứng minh rằng E,A,Q thẳng
a: Xét tứ giác AKMN có
MN//AK
AN//MK
Do đó: AKMN là hình bình hành
mà \(\widehat{NAK}=90^0\)
nên AKMN là hình chữ nhật
b: Xét ΔAMQ có
AN là đường cao
AN là đường trung tuyến
Do đó: ΔAMQ cân tại A
mà AN là đường cao
nên AN là tia phân giác của góc MAQ(1)
Xét ΔAME có
AK là đường cao
AK là đường trung tuyến
DO đó: ΔAME cân tại A
mà AK là đường cao
nên AK là tia phân giác của góc MAE(2)
Từ (1) và (2) suy ra \(\widehat{QAE}=2\cdot\left(\widehat{MAN}+\widehat{MAK}\right)=2\cdot90^0=180^0\)
hay Q,E,A thẳng hàng
Cho tam giác ABC có D thuộc BC. Qua D kẻ DE song song với AB (E thuộc AC). I là trung điểm của AD. Kẻ DF song song với AC (F thuộc AB)
a. chứng minh DF=AE
b. E và F đối xứng nhau tại I?