Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thanh Tùng
Xem chi tiết
Phan Bảo Huân
24 tháng 1 2017 lúc 17:46

10n+18n-1

=10n-1-9n+27n

=999..9-9n+27n

=9(11...1-n)+81n chia hết cho 27.

Hỏa Hỏa
Xem chi tiết
Hoàng Thị Ngọc Anh
19 tháng 8 2017 lúc 20:18

Vì A là tích ba nguyên liên tiếp nên chia hết cho 2 và 3, mà 2 và 3 là số nguyên tố cùng nhau nên chia hết cho 6.

Trần Trọng Thắng
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 5 2022 lúc 10:59

Vì n;n-1;n-2 là ba số nguyên liên tiếp

nên \(n\left(n-1\right)\left(n-2\right)⋮3!\)

hay \(A⋮6\)

Trần Long Tăng
Xem chi tiết
Witch Rose
19 tháng 8 2017 lúc 20:36

n thuộc Z

=>n(n-1)(n-2) là tích của 3 số nguyên liên tiếp

=>A chia hết cho 6

Trần Nhật Tân
19 tháng 8 2017 lúc 20:37

:v vậy cũng đc à

Ben 10
19 tháng 8 2017 lúc 20:38

Cách 1:Nếu biết dùng p2 quy nạp thì có 1 cách giải được bài này: 
*với n=1 ta có :1.2.3 chia hết cho 6 
*Giả sử với n=k mênh đề đúng: k(k+1)(2k+1) chia hết cho 6 
-> với n=k+1 ta có: (k+1)(k+2)(2(k+1)+1) 
=(k+1)(k+2)(2k+3) 
=2k(k+1)(k+2)+3(k+1)(k+2) (1) 
vi k(k+1)(K+2) chia hết cho 6 (ở trên) 
và (k+1)(k+2) là hai số liên tiếp nên 3(k+1)(k+2) chia hết cho 6 
=> (1) luôn chia hết cho 6 
=> mênh đề đúng với mọi n thuộc Z 


cách 2: 
n(n+1)(2n+1) 
=n(n+1)(n+2+n-1) 
=n(n+1)(n+2) + (n-1)n(n+1) (2) 
vì tích 3 số liên tiếp chia hết cho 6 
từ (2) ta có tổng của hai số chia hết cho 6 thì cũng chia hết cho 6 
=> biểu thức trên đúng với mọi n thuộc Z 
Chúc sớm tìm được thêm nhiều lời giải nha!

Trần Long Tăng
Xem chi tiết
Phạm Thị Minh Thư
29 tháng 7 2017 lúc 16:32

cho A = 10n+18n-1 chia hết cho 27

suy ra 10n+18n-1 chia hết cho 27

suy ra n=1

Thằn Lằn
Xem chi tiết
Trịnh Thành Công
19 tháng 8 2017 lúc 10:27

Vì \(n\left(n-1\right)⋮2\left(1\right)\)

    \(\left(n-1\right)\left(n-2\right)⋮3\left(2\right)\)

             Từ (1) và (2) suy ra:\(n\left(n-1\right)\left(n-2\right)⋮6\)

Khang1029
Xem chi tiết
Nguyễn Hoàng Minh
14 tháng 12 2021 lúc 20:50

\(b,n^4-10n^2+9=n^4-n^2-9n^2+9=\left(n^2-1\right)\left(n^2-9\right)\\ =\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)

Vì \(n\in Z\) và n lẻ nên \(n=2k+1\left(k\in Z\right)\)

\(\Leftrightarrow\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\\ =2k.\left(2k+2\right).\left(2k-2\right).\left(2k+4\right)\\ =16k\left(k+1\right)\left(k-1\right)\left(k+2\right)\)

Vì \(k,k+1,k-1,k+2\) là 4 số nguyên liên tiếp nên chia hết cho \(1.2.3.4=24\)

Do đó \(16k\left(k+1\right)\left(k-1\right)\left(k+2\right)⋮24.16=384\)

Nguyễn Hoàng Minh
14 tháng 12 2021 lúc 21:03

\(c,\forall n=1\Leftrightarrow10+18-28=0⋮27\\ \text{G/s }n=k\Leftrightarrow\left(10^k+18k-28\right)⋮27\\ \Leftrightarrow10^k+18k-28=27m\left(m\in N\right)\\ \Leftrightarrow10^k=27m-18k+28\\ \forall n=k+1\Leftrightarrow10^{k+1}+18\left(k+1\right)-28\\ =10.10^k+18k-10\\ =10\left(27m-18k+28\right)+18k-10=270m-162k+270⋮27\)

Theo PP quy nạp ta đc đpcm

Khang1029
Xem chi tiết
Khang1029
Xem chi tiết