Vì n;n-1;n-2 là ba số nguyên liên tiếp
nên \(n\left(n-1\right)\left(n-2\right)⋮3!\)
hay \(A⋮6\)
Vì n;n-1;n-2 là ba số nguyên liên tiếp
nên \(n\left(n-1\right)\left(n-2\right)⋮3!\)
hay \(A⋮6\)
Cho n thuộc Z Chứng tỏ A = n ( n - 1 ) ( n - 2 ) chia hết cho 6
2.Chứng tỏ n thuộc Z thì A=n^3-7n chia hết cho 6
Chứng tỏ n^3 + 3n^2 + 2n chia hết cho 6 với n thuộc Z.
1 Chứng tỏ rằng
a ) 10 ^21 +20 chia hết cho 6
b) 10^2015 +8 chia hết cho 18
2 Chứng tỏ rằng vs mọi số tự nhiên n thì ( n +n ) . ( n + 12 ) chia hết cho 2
3 Chứng tỏ rằng tính các ba số chẵn liên tiếp chia hết cho 48
Chứng tỏ a thuộc N và a không chia hết cho 3 và a lẻ thì a2 - 1 chia hết cho 6
tìm n thuộc N,chứng minh rằng:
a,(n+10)(n+15)chia hết cho 2
b,n(n+1)(2n+1)chia hết cho 6
c,n(2n+1)(7n+1)chia hết cho 6 (với mọi n thuộc N)
1. Cho A= 120b+36b với a,b thuộc N. Chứng tỏ A: 12
2. Cho a,b thuộc N. Chứng tỏ:
a. 4a+2b chia hết cho 3 biết 2a+ 7b chia hết cho 3
b. a+ 3a chia hết cho 2 biết a+b chia hết cho 2.
c. a+ 34b chia hết cho 12 biết 11a+ 2b chia hết cho 12.
d. 9a+ 13b chia hết cho 12 biết 12b chia hết cho 12.
Chứng tỏ A = a^3 + 5a chia hết cho 6 nếu a thuộc N
Chứng tỏ rằng (2n + 1) (2n+2) chia hết cho 3 với mọi n thuộc N