rút gọn\(\sqrt{2018^2+2019^2+2018^2.2019^2}\)
So sánh :
A=\(\sqrt{2019^2-1}-\sqrt{2018^2-1}\) và B=\(\dfrac{2.2019}{\sqrt{2019^2-1+\sqrt{2018^2-1}}}\)
Rút gọn \(\frac{1-\sqrt{2}+\sqrt{3}}{1+\sqrt{2}+\sqrt{3}}+\frac{1-\sqrt{4}+\sqrt{5}}{1+\sqrt{4}+\sqrt{5}}+...+\frac{1-\sqrt{2018}+\sqrt{2019}}{1+\sqrt{2018}+\sqrt{2019}}\)
Rút gọn biểu thức: A= \(\frac{\sqrt{x-2017-2\sqrt{x-2018}}}{\sqrt{x-2018}-1}\)Với x > 2019
Rút gọn biểu thức sau
(20182019+20182018+...+20182+2018)2017+1
\(M=\left(2018^{2019}+2018^{2018}+...+2018^2+2018\right)2017+1\)
Gọi \(A=2018^{2019}+2018^{2018}+...+2018^2+2018\)
\(\Rightarrow2018A=2018^{2020}+2018^{2019}+...+2018^3+2018^2\)
\(\Rightarrow2018A-A=2018^{2020}-2018\)
\(\Rightarrow2017A=2018^{2020}-2018\)
\(\Rightarrow A=\left(2018^{2020}-2018\right)\div2017\)
\(\Rightarrow M=\left(2018^{2020}-2018\right)\div2017.2017+1\)
\(\Rightarrow M=2018^{2020}-2018+1\)
\(\Rightarrow M=2018^{2020}-2017\)
Rút gọn:
\(S=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{2019\sqrt{2018}+2018\sqrt{2019}}\)
Lời giải:
Xét số hạng tổng quát:
\(\frac{1}{(n+1)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n(n+1)}(\sqrt{n+1}+\sqrt{n})}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}(\sqrt{n+1}+\sqrt{n})(\sqrt{n+1}-\sqrt{n})}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}(n+1-n)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}}\)
\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Do đó:
\(S=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2018}}-\frac{1}{\sqrt{2019}}\)
\(=1-\frac{1}{\sqrt{2019}}\)
Rút gọn biểu thức S = \(\frac{2019}{2\sqrt{1}+1\sqrt{2}}+\frac{2019}{3\sqrt{2}+2\sqrt{3}}+\frac{2019}{4\sqrt{3}+3\sqrt{4}}+...+\frac{2019}{2019\sqrt{2018}+2018\sqrt{2019}}\)
Mk chỉ cần kết quả thôi , cảm ơn nhiều ạ
Cho biểu thức P=\(\dfrac{2\sqrt{x}+1}{x+\sqrt{x}}-\dfrac{1-\sqrt{x}}{\sqrt{x}}:1+\dfrac{2}{\sqrt{x}}\)với x nhỏ hơn 0
1.Rút gọn P
2.Tính giá trị cuả P biết x=2019 -2\(\sqrt{2018}\)
rút gon:\(\frac{1+2019\sqrt{2018}-2018\sqrt{2019}}{\sqrt{2018}+\sqrt{2019}+\sqrt{2018.2019}}\)
Chứng minh rằng : \(2019/ \sqrt[2]{2018} + 2018/\sqrt[2]{2019} > \sqrt[2]{2018} + \sqrt[2]{2019}\)
\(\frac{2019}{\sqrt{2018}}+\frac{2018}{\sqrt{2019}}\ge\frac{\left(\sqrt{2019}+\sqrt{2018}\right)^2}{\sqrt{2018}+\sqrt{2019}}=\sqrt{2018}+\sqrt{2019}\)
Dấu "=" ko xảy ra nên \(\frac{2019}{\sqrt{2018}}+\frac{2018}{\sqrt{2019}}>\sqrt{2018}+\sqrt{2019}\)