Tính \(C=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2019\sqrt{2018}+2018\sqrt{2019}}\)
Rút gọn biểu thức S = \(\frac{2019}{2\sqrt{1}+1\sqrt{2}}+\frac{2019}{3\sqrt{2}+2\sqrt{3}}+\frac{2019}{4\sqrt{3}+3\sqrt{4}}+...+\frac{2019}{2019\sqrt{2018}+2018\sqrt{2019}}\)
Mk chỉ cần kết quả thôi , cảm ơn nhiều ạ
Chứng minh \(\dfrac{1}{2\sqrt{1}}+\dfrac{1}{3\sqrt{2}}+...+\dfrac{1}{2018\sqrt{2017}}+\dfrac{1}{2019\sqrt{2018}}\)
So sánh
\(\dfrac{2019}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2019}}\) và \(\sqrt{2018}+\sqrt{2019}\)
tính A = \(\sqrt{1+2018^2+\left(\frac{2018}{2019}\right)^2}+\frac{2018}{2019}\)
tính A=\(\sqrt{1+2018^2+\left(\frac{2018}{2019}\right)^2+\frac{2018}{2019}}\)
1.Giải hệ phương trình sau: \(\left\{{}\begin{matrix}\sqrt{x-2018}-\sqrt{y-2019}=1\\\sqrt{y-2018}-\sqrt{x-2019}=1\end{matrix}\right.\)
2. Cho a,b là các số hữu tỉ thỏa mãn \(\left(a^2+b^2-2\right)\left(a+b\right)^2+\left(1-ab\right)^2=-4ab\)
CMR: \(\sqrt{1+ab}\) là một số hữu tỉ
Help me!!!!Please!!!!
giải phương trình:\(\left(1+\sqrt{x^2+2020x}+2019\right)\left(\sqrt{x+2019}-\sqrt{x+1}\right)=2018\)
Tính: \(B=\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+....+\sqrt{1+\frac{1}{2018^2}+\frac{1}{2019^2}}\)