Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
khong có
Xem chi tiết
YUUKI
Xem chi tiết
Akai Haruma
25 tháng 10 2023 lúc 0:33

Lời giải:

Áp dụng BĐT Cô-si và Cauchy-Schwarz cho các số dương ta có:

$A=\frac{1}{x}+\frac{1}{\sqrt{xy}}\geq \frac{1}{x}+\frac{1}{\frac{x+y}{2}}=\frac{1}{x}+\frac{2}{x+y}=2(\frac{1}{2x}+\frac{1}{x+y})$

$\geq 2.\frac{4}{2x+x+y}=\frac{8}{3x+y}\geq \frac{8}{4}=2$

Vậy $A_{\min}=2$. Giá trị này đạt được tại $x=y; 3x+y=4\Leftrightarrow x=y=1$

Ashley
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 5 2023 lúc 23:19

A>=1/(1+xy)=1/2

Dấu = xảy ra khi x=y=1

Mì_Xào_Tỏi
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
21 tháng 6 2021 lúc 16:01

Có: \(A=16xy+\dfrac{1}{xy}-15xy\)

Áp dụng bdt Co-si, ta có:

\(16xy+\dfrac{1}{xy}\ge2\sqrt{16xy.\dfrac{1}{xy}}=8\)

Có \(x+y\ge2\sqrt{xy}< =>xy\le\dfrac{1}{4}\)

=> A \(\ge8-15.\dfrac{1}{4}=\dfrac{17}{4}\)

Dấu "=" xảy ra <=> x = y= \(\dfrac{1}{2}\)

Hoai Nam Nguyen
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 11 2021 lúc 19:37

\(A=\dfrac{1}{x}+\dfrac{2}{2\sqrt{xy}}\ge\dfrac{1}{x}+\dfrac{2}{x+y}=2\left(\dfrac{1}{2x}+\dfrac{1}{x+y}\right)\ge2.\dfrac{4}{2x+x+y}=\dfrac{8}{3x+y}\ge\dfrac{8}{4}=2\)

Dấu "=" xảy ra khi \(x=y=1\)

Phượng Hoàng Lửa
Xem chi tiết
Quân Hà
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 3 2021 lúc 0:57

Bạn kiểm tra lại đề bài, với biểu thức thế này thì không thể tìm được điểm rơi (nó là nghiệm của 1 pt bậc 4 hệ số rất xấu ko thể giải được)

Nguyễn Vương Phú
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 10 2021 lúc 14:39

\(y\ge1+xy\Rightarrow1\ge\dfrac{1}{y}+x\ge2\sqrt{\dfrac{x}{y}}\Rightarrow\dfrac{x}{y}\le4\Rightarrow\dfrac{y}{x}\ge4\)

\(G=\dfrac{x}{y}+\dfrac{y}{x}=\left(\dfrac{x}{y}+\dfrac{y}{16x}\right)+\dfrac{15}{16}.\dfrac{y}{x}\ge2\sqrt{\dfrac{xy}{16xy}}+\dfrac{15}{16}.4=\dfrac{17}{4}\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{1}{2};2\right)\)

Nguyễn Vương Phú
Xem chi tiết