1. Tính
A. \(2x^2.\left(3x^2-2x+5\right)\)
B.\(\dfrac{x}{x^3+1}.\dfrac{1}{x^3-1}\)
2. Tính số đo các góc của hình bình hành biết góc A+ góc B+ góc C = 230 độ
bài 1
a\(\dfrac{x+3}{2x-2}-\dfrac{4}{x^2-1}.\dfrac{x+1}{2}\)
b\(\left(x^2-4\right)\left(\dfrac{1}{x+2}+\dfrac{1}{2-x}-1\right)\)
bài 2
cho hình bình hành ABCD có AD= 2AB góc a bằng 60 độ. Gợi E ,F là chung diểm của BC và AD
a/ chứng minh rằng tứ giác ABEF là hình thoi
b/ chứng minh rằng tứ giác BFDC là hình thang cân
c/ lấy điểm M đối xứng với điểm A qua B chứng minh tứ giác BMCD là hình chữ nhật
monh các bậc CAO NHÂN giải hộ mình với ạ
Tìm số đo góc nhọn x:
a) \(4\sin x-1=1\)
b) \(2\sqrt{3}-3\tan x=\sqrt{3}\)
c) \(7\sin-3\cos\left(90^o-x\right)=2,5\)
d) \(\left(2\sin-\sqrt{2}\right)\left(4\cos-5\right)=0\)
e) \(\dfrac{1}{\cos^2x}-\tan x=1\)
f) \(\cos^2x-3\sin^2x=0,19\)
a) \(4sinx-1=1\Leftrightarrow4sinx=2\Leftrightarrow sinx=\dfrac{2}{4}=\dfrac{1}{2}\)
\(\Leftrightarrow x=30^o\)
b) \(2\sqrt{3}-3tanx=\sqrt{3}\Leftrightarrow3tanx=2\sqrt{3}-\sqrt{3}=\sqrt{3}\Leftrightarrow tanx=\dfrac{\sqrt{3}}{3}\)
\(\Leftrightarrow x=30^o\)
c) \(7sinx-3cos\left(90^o-x\right)=2,5\Leftrightarrow7sinx-3sinx=2,5\Leftrightarrow4sinx=2,5\Leftrightarrow sinx=\dfrac{5}{8}\Leftrightarrow x=30^o41'\)
d)\(\left(2sin-\sqrt{2}\right)\left(4cos-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2sin-\sqrt{2}=0\\4cos-5=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2sin=\sqrt{2}\\4cos=5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}sin=\dfrac{\sqrt{2}}{2}\\cos=\dfrac{5}{4}\left(loai\right)\end{matrix}\right.\)\(\Rightarrow x=45^o\)
Xin lỗi nãy đang làm thì bấm gửi, quên còn câu e, f nữa:"(
e) \(\dfrac{1}{cos^2x}-tanx=1\Leftrightarrow1+tan^2x-tanx-1=0\Leftrightarrow tan^2x-tanx=0\Leftrightarrow tanx\left(tanx-1\right)=0\Rightarrow tanx-1=0\Leftrightarrow tanx=1\Leftrightarrow x=45^o\)
f) \(cos^2x-3sin^2x=0,19\Leftrightarrow1-sin^2x-3sin^2x=0,19\Leftrightarrow1-4sin^2x=0,19\Leftrightarrow4sin^2x=0,81\Leftrightarrow sin^2x=\dfrac{81}{400}\Leftrightarrow sinx=\dfrac{9}{20}\Leftrightarrow x=26^o44'\)
Bài 1:
a) Thực hiện phép tính: \(\dfrac{17}{13}\)-\(\dfrac{5}{3}\)
b) Cho tam giác ABC có góc A=70o và gócB=65o . Tính số đo của góc C.
Bài 2:
a) Tìm x biết: \(x+3\dfrac{1}{2}=\dfrac{11}{5}\)
b) Vẽ đồ thị của hàm số y = 3x
c) Tính nhanh: \(\left(\dfrac{-3}{7}+\dfrac{5}{11}\right):\dfrac{4}{31}+\left(\dfrac{-4}{7}+\dfrac{6}{11}\right):\dfrac{4}{31}\)
Bài 1:
a/\(\dfrac{17}{3}-\dfrac{5}{3}=\dfrac{17-5}{3}=\dfrac{12}{3}\)=4
b/Tam giác ABC có:
góc A+góc B+góc C=180 độ
=>70 độ+65 độ+góc C=180 độ
=>góc C =180 độ-70 độ-65 độ=45 độ
Bài 2:
a/\(x+3\dfrac{1}{2}=\dfrac{11}{5}=>x+\dfrac{7}{2}=\dfrac{11}{5}=>x=\dfrac{11}{5}-\dfrac{7}{2}=\dfrac{-13}{10}\)
c/\(\left(\dfrac{-3}{7}+\dfrac{5}{11}\right):\dfrac{4}{31}+\left(\dfrac{-4}{7}+\dfrac{6}{11}\right):\dfrac{4}{31}\)
=>\(\left(\dfrac{-3}{7}+\dfrac{5}{11}\right).\dfrac{31}{4}+\left(\dfrac{-4}{7}+\dfrac{6}{11}\right).\dfrac{31}{4}\)
=>\(\dfrac{31}{4}.\left(\dfrac{-3}{7}+\dfrac{5}{11}+\dfrac{\left(-4\right)}{7}+\dfrac{6}{11}\right)=\dfrac{31}{4}.0=0\)
Cho 2 đơn thức
\(A\left(x\right)=-2x^3+11x^2-5x-\dfrac{1}{5}\)
\(B\left(x\right)=2x^3-3x^2-7x+\dfrac{1}{5}\)
a) Tính A(x) + B(x)
b) Tìm đa thức C(x) biết C(x) +B(x) = A(x)
a: \(A\left(x\right)+B\left(x\right)\)
\(=-2x^3+11x^2-5x-\dfrac{1}{5}+2x^3-3x^2-7x+\dfrac{1}{5}\)
\(=8x^2-12x\)
b: C(x)=A(x)-B(x)
\(=-2x^3+11x^2-5x-\dfrac{1}{5}-2x^3+3x^2+7x-\dfrac{1}{5}\)
\(=-4x^3+14x^2+2x-\dfrac{2}{5}\)
Bài 2 . Thực hiện phép tính
a)\(6x^3\)\(\left(\dfrac{1}{3}x^2-\dfrac{5}{2}-\dfrac{1}{6}\right)\)\(-2x^5\)\(-x^3\)
b)\(\left(x-3\right)\left(x^2+3x-2\right)\)
c)\(\left(4x^3-4x^2-5x+4\right):\left(2x+1\right)\)
a: =2x^5-15x^3-x^2-2x^5-x^3=-16x^3-x^2
b: =x^3+3x^2-2x-3x^2-9x+6
=x^3-11x+6
c: \(=\dfrac{4x^3+2x^2-6x^2-3x-2x-1+5}{2x+1}\)
\(=2x^2-3x-1+\dfrac{5}{2x+1}\)
a) \(6x^3\left(\dfrac{1}{3}x^2-\dfrac{5}{2}-\dfrac{1}{6}\right)-2x^5-x^3\)
\(=6x^3\left(\dfrac{1}{3}x^2-\dfrac{16}{6}\right)-2x^5-x^3\)
\(=2x^5-16x^3-2x^5-x^3\)
\(=-17x^3\)
b) \(\left(x+3\right)\left(x^2+3x-2\right)\)
\(=x^3+3x^2-2x+3x^2+9x-6\)
\(=x^3+6x^2+7x-6\)
c) \(\left(4x^3-4x^2-5x+4\right):\left(2x+1\right)\)
\(=2x^2+4x^3-2x-4x^2-\dfrac{5}{2}-5x+\dfrac{2}{x}+4\)
\(=4x^3-2x^2-7x+\dfrac{2}{x}+\dfrac{3}{2}\)
1. Cho tam giác ABC có góc A bằng 74 độ góc B bằng 47 độ. Tính số đo góc ngoài tại đỉnh C?
2. Cho tam giác DEF có góc F bằng 40 độ, D - E bằng 52 độ. Tính số đo góc D, góc E?
3. Cho tam giác ABC có góc A bằng x, số đo góc B bằng 2x, số đo góc C bằng 3x. Tính số đo các góc của tam giác ABC
Bài 1:
Số đo góc ngoài tại đỉnh C là \(74^0+47^0=121^0\)
Câu 2:
Đặt \(\widehat{D}=a;\widehat{E}=b\)
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a-b=52\\a+b=140\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=96\\b=44\end{matrix}\right.\)
Bài 3:
Theo đề, ta có: x+2x+3x=180
=>6x=180
=>x=30
=>\(\widehat{A}=30^0;\widehat{B}=60^0;\widehat{C}=90^0\)
Viết phương trình tiếp tuyến của đồ thị của các hàm số :
a) \(y=\dfrac{x^2+4x+5}{x+2}\) tại điểm có hoành độ \(x=0\)
b) \(y=x^3-3x^2+2\) tại điểm \(\left(-1;-2\right)\)
c) \(y=\sqrt{2x+1}\) , biết hệ số góc của tiếp tuyến là \(\dfrac{1}{3}\)
d) \(y=x^4-2x^2\) tại điểm có hoành độ \(x=-2\)
e) \(y=\dfrac{2x+1}{x-2}\) biết hệ số góc của tiếp tuyến bằng \(-5\)
Thực hiện phép tính:
a) \(3x.\left(2x^2-3x+4\right)\)
b) \(\left(x+3\right)^2+\left(3x-2\right)\left(x+4\right)\)
c) \(\dfrac{2x-4}{x-1}+\dfrac{2x+2}{x^2-1}\)
`a)3x(2x^2-3x+4)`
`=6x^3-9x^2+12x`
______________________________________________
`b)(x+3)^2+(3x-2)(x+4)`
`=x^2+6x+9+3x^2+12x-2x-8`
`=4x^2+16x+1`
______________________________________________
`c)[2x-4]/[x-1]+[2x+2]/[x^2-1]` `ĐK: x \ne +-1`
`=[(2x-4)(x+1)+2x+2]/[(x-1)(x+1)]`
`=[2x^2+2x-4x-4+2x+2]/[(x-1)(x+1)]`
`=[2x^2-2]/[x^2-1]`
`=2`
Tính các giới hạn sau:
Câu 1:
a, limx→\(\pm\)∞ \(\dfrac{\left(2x-3\right)^2\left(4x+7\right)^3}{\left(3x-4\right)^2\left(5x^2-1\right)}\)
b, limx→\(\pm\)∞ \(\dfrac{\sqrt[3]{x^3+2x^2+x}}{2x-2}\)
c, limx→\(\pm\)∞ \(\dfrac{\sqrt[3]{\left(x^3+2x^2\right)^2}+x^3\sqrt{x^3+2x^2}+x^2}{3x^2-2x}\)
d, limx→+∞ \(\dfrac{\left(2-3x\right)^3\left(x+1\right)^2}{1-4x^5}\)
e, limx→+∞ \(\dfrac{\left(2x-3\right)^{20}\left(3x+2\right)^{20}}{\left(2x+1\right)^{50}}\)
g, limx→+∞ \(\dfrac{\left(2x-3\right)^3\left(4x^5+7\right)^9}{11x^{47}-8}\)
a/ \(=\lim\limits_{x\rightarrow\pm\infty}\dfrac{\dfrac{\left(2x\right)^2.\left(4x\right)^3}{x^4}}{\dfrac{\left(3x\right)^2\left(5x^2\right)}{x^4}}=\lim\limits_{x\rightarrow\pm\infty}\dfrac{4^4.x}{45}=\pm\infty\)
b/ \(=\lim\limits_{x\rightarrow\pm\infty}\dfrac{\sqrt[3]{\dfrac{x^3}{x^3}+\dfrac{2x^2}{x^3}+\dfrac{x}{x^3}}}{\dfrac{2x}{x}-\dfrac{2}{x}}=\dfrac{1}{2}\)
c/ \(=\lim\limits_{x\rightarrow\pm\infty}\dfrac{\dfrac{\sqrt[3]{\left(x^3+2x^2\right)^2}}{x^2}+\dfrac{x\sqrt[3]{x^3+2x^2}}{x^2}+\dfrac{x^2}{x^2}}{\dfrac{3x^2}{x^2}-\dfrac{2x}{x^2}}=\dfrac{1+1+1}{3}=1\)
d/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{\left(-3x\right)^3x^2}{x^5}}{-\dfrac{4x^5}{x^5}}=\dfrac{-27}{-4}=\dfrac{27}{4}\)
e/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{\left(2x\right)^{20}.\left(3x\right)^{20}}{x^{50}}}{\dfrac{\left(2x\right)^{50}}{x^{50}}}=0\)
g/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{8x^3.\left(4x^5\right)^9}{x^{47}}}{\dfrac{11x^{47}}{x^{47}}}=+\infty\)