Cho các số thực dương a,b thoả a+b<1.
Cm : a+b+1/a^2+1/b^2>=9 . Giúp mình với ạ .
Giúp mình với ạ
Cho các số thực dương a, b thoả a+b <1 . Cm a +b +1/a^2 +1/b^2 >=9
Cho các số thực dương a,b,c thoả mãn ab+bc+ca=3. Chứng minh rằng: 4(a+b+c)+abc≥13.
Giúp mình với!
Vì \(ab+bc+ac=3\) => \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{3}{abc}\)
Đặt \(\frac{1}{a}=x\): \(\frac{1}{b}=y\): \(\frac{1}{c}=z\)=> x+y+z=3xyz
Ta có \(4\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\frac{1}{xyz}\ge13\)
AD BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) dấu = khi a=b=c ta có
\(4\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{36}{x+y+z}\)=\(\frac{36}{3xyz}=\frac{12}{xyz}\)
=> \(\frac{12}{xyz}+\frac{1}{xyz}\ge13\)
=> \(\frac{13}{xyz}\ge13\)
mà \(3xyz=x+y+z\ge3\sqrt[3]{xyz}\)dấu = khi x=y=z
=> xyz\(\le1\)
=> đpcm
Cho các số thực dương a,b,c thoả mãn ab+bc+ca=3. Chứng minh rằng: \(4\left(a+b+c\right)+abc\ge13.\).
Giúp mình với!
Ta có
\(\frac{\left(a+b+c\right)^2}{3}\)> ab + bc + ca =3 => a + b + => 3
ta có abc > ( a+b+c) ( b + c -a ) ( c + a -b)
= ( a+b+c+ 2c) ( b + c -a +2a) ( c + a -b+2b)
> ( 3 -2c ) ( 3 - 2 a ) ( 3 - 2 b ) ( do a+b + c)> 3
= 12 ( xy + yz + zx ) -8 xyz - 18 ( x + y + z ) + 27
= 12 .3 - 8xyz - 18 .3 +27
9 - 8 xyz
ta có : xyz > 9 - 8 xyz + 8 xyz > 9 => xyz > 1
do đó : 4 ( a + b + c ) + abc > 4.3 + 1 = 13 (dpcm)
hok tốt
Ta có
\(\frac{\left(a+b+c\right)^2}{3}\)> ab + bc + ca =3 => a + b + => 3
ta có abc > ( a+b+c) ( b + c -a ) ( c + a -b)
= ( a+b+c+ 2c) ( b + c -a +2a) ( c + a -b+2b)
> ( 3 -2c ) ( 3 - 2 a ) ( 3 - 2 b ) ( do a+b + c)> 3
= 12 ( xy + yz + zx ) -8 xyz - 18 ( x + y + z ) + 27
= 12 .3 - 8xyz - 18 .3 +27
9 - 8 xyz
ta có : xyz > 9 - 8 xyz + 8 xyz > 9 => xyz > 1
do đó : 4 ( a + b + c ) + abc > 4.3 + 1 = 13 (dpcm)
hok tốt
Giúp em với ạ, em cảm ơn.
Cho a,b,c là các số thực dương thoả \(a+b+c=\dfrac{2}{3}\). Tìm giá trị nhỏ nhất của
\(A=\dfrac{a}{\sqrt{b+c}}+\dfrac{b}{\sqrt{c+a}}+\dfrac{c}{\sqrt{a+b}}\)
Cho a,b,c,d là các số nguyên dương thoả mãn a + b + c + d = 25. Tìm giá trị lớn nhất của M = c/b + d/a
GIẢI HỘ MÌNH VỚI MÌNH ĐANG CẦN Ạ ! THANKS
Các bạn giúp mình bài này với!
Cho a, b, c là các số thực DƯƠNG thoả mãn \(a+b+c=\sqrt{abc}\) . CMR: \(ab+bc+ca\ge9\left(a+b+c\right)\).
Ta có:\(\sqrt{abc}=a+b+c\ge3\sqrt[3]{abc}\)\(\Rightarrow\left(\sqrt{abc}\right)^6\ge\left(3\sqrt[3]{abc}\right)^6\Leftrightarrow\left(abc\right)^3\ge3^6\left(abc\right)^2\)
\(\Leftrightarrow abc\ge3^6\)(1).Lại có:\(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\)
BĐT cần chứng minh tương đương với:\(3\sqrt[3]{\left(abc\right)^2}\ge9\sqrt{abc}\Leftrightarrow\sqrt[3]{\left(abc\right)^2}\ge3\sqrt{abc}\)
\(\Leftrightarrow\left(\sqrt[3]{\left(abc\right)^2}\right)^6\ge\left(3\sqrt{abc}\right)^6\)\(\Leftrightarrow\left(abc\right)^4\ge3^6\left(abc\right)^3\Leftrightarrow abc\ge3^6\).Điều này luôn đúng theo (1)
Suy ra:\(ab+bc+ca\ge9\sqrt{abc}=9\left(a+b+c\right)\).Hoàn tất chứng minh
Dấu "=" xảy ra khi \(a=b=c=9\)
Bạn có cách nào mà ko dùng BĐT Cauchy 3 số ko?
Cho a,b,c là các số thực dương thỏa hệ thức: \(\dfrac{a}{b}=\dfrac{b}{c}\). Chứng minh: \(\dfrac{a}{c}=\dfrac{2a^2+5b^2}{2b^2+5c^2}\)
Ai giúp mình bài này với ạ!!!
Cho các số thực dương a,b,c thoả mãn \(a^2b^2+b^2c^2+c^2a^2=3abc\). Chứng minh rằng \(\sqrt{\frac{a+b^2c}{2}}+\sqrt{\frac{b+c^2a}{2}}\sqrt{\frac{c+a^2b}{2}}\le\frac{3}{abc}\).
Giúp mình với, mình đang cần gấp
C6. Cho các số thực dương thoả mãn: ab+1 nhỏ hơn hoặc bằng b Chứng minh rằng : ( a + (1/a^2) ) + ( b^2 + (1/b) ) lớn hơn hoặc bằng 9
\(ab+1\le b\Rightarrow a+\dfrac{1}{b}\le1\)
Đặt \(\left(a;\dfrac{1}{b}\right)=\left(x;y\right)\Rightarrow x+y\le1\)
Gọi vế trái của BĐT cần chứng minh là P:
\(P=x+\dfrac{1}{x^2}+y+\dfrac{1}{y^2}=\left(\dfrac{1}{x^2}+8x+8x\right)+\left(\dfrac{1}{y^2}+8y+8y\right)-15\left(x+y\right)\)
\(P\ge3\sqrt[3]{\dfrac{64x^2}{x^2}}+3\sqrt[3]{\dfrac{64y^2}{y^2}}-15.1=9\) (đpcm)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{1}{2};\dfrac{1}{2}\right)\) hay \(\left(a;b\right)=\left(\dfrac{1}{2};2\right)\)