Cho tam giác AMN có AM = AN.Tia phân giác của góc A cắt MN tại I.Chứng minh :
a.IM = IN
b.AI vuông góc MN
c.BIết góc MAN = 50 độ .Tính số đo góc M
a, IM=IN
b, AI vuông góc với MN
c, Biết góc MAN =50 . Tính số đo góc M
a) Xét tam giác AIM và tam giác có:
AM=AN(gt); góc MAI= góc NAI( AI là tia phân giác); AI:chung
=>tam giác AIM =tam giác AIN(c-g-c)
=> IM=IN( 2 cạnh tương ứng)
b) Có tam giác AIM=tam giacs AIN(câu a)
=> Góc MIA =góc NIA(2 góc tương ứng)
=>2 góc MIA=góc MIN
=>2*MIA=MIN
=>2*MIA=180độ
=>MIA=180/2=90độ
=>AI vuông góc với MN
c)Có tam giác ABC cân tại A(AM=AN)
=>Góc M= góc N(t/c tam giác cân)
=>2M+A=180độ
=>2M=180-50=130độ
=>Góc M=130/2=65độ
=> Góc M= 65độ
cho tam giác cân AMN có góc MAN =\(^{120^0}\). Vẽ đường cao AH ( H thuộc MN )
a, Chứng minh AH là tia phân giác của góc MAN
b, Kẻ HD vuông góc với AM ( D thuộc AM ) , kẻ HE vuông góc với AN ( E thuộc AN ). Chứng minh tam giác ADE cân và DE song song với MN
c,Chứng minh tam giác HDE đều
d, Đường vuông góc với MN kẻ từ N cắt MA tại I. Tính độ dài cạnh AI biết NI = 10cm
tu ve hinh :
xet tamgiac AMN can tai A (gt) => goc AMN = goc ANM va AM = AN (dn)
AH vuong goc voi MN => goc AHN = goc AHM = 90o (dn)
=> tamgiac AMH = tamgiac ANH (ch - gn)
=> goc NAH = goc MAH (dn) ma AH nam giua AN va AM
=> AH la phan giac cua goc MAN
: Cho tam giác cân AMN có góc MAN = 120o . Vẽ đường cao AH ( H∈ MN).
a) Chứng minh rằng AH là tia phân giác của góc MAM.
b) Kẻ HD vuông góc với AM ( D ∈ AM), kẻ HE vuông góc với AN ( E ∈AN). Chứng minh rằng ΔADE cân và DE//MN.
c) Chứng minh rằng Δ HDE đều.
d) Đường vuông góc với MN kẻ từ N cắt MA tại I. Tính độ dài của cạnh AI biết NI = 10cm
Xét tam giác AMN có góc MAN = 1200 suy ra tam giác AMN cân tại A
suy ra góc AMN=góc ANM = 300
Xét tam giác AHM và tam giác AHN
có AH chung
góc AHM = góc AHN = 900
AM=AN (vì tam giác AMN cân tại A)
suy ra tam giác AHM = tam giác AHN ( cạnh huyền-cạnh góc vuông)
suy ra góc MAH=góc HAN (hai góc tương ứng)
suy ra AH là tia phân giác của góc MAN
b) Xét tam giác vuong AHD và tam giác vuông AhE
có AH chung
góc hAD=góc HAE (CMT)
suy ra tam giác AHD = tam giác AHE ( cạnh huyền-góc nhọn) (1)
suy ra AD=AE suy ra tam giác ADE cân tại A
suy ra góc ADE=góc AED=300
suy ra góc ADE = góc AMN = 300
mà góc ADE đồng vị với góc AMN
suy ra DE//MN
c) tam giác HEN vuông tại E suy ra góc EHN = 600
tam giác HDM vuông tại D suy ra góc DHM = 600
mà góc DHM + góc DHE + góc EHN = 1800
suy ra góc DHE = 600 (2)
Từ (1) suy ra DH = HE suy ra tam giác DHE cân tại H (3)
Từ (2) và (3) suy ra tam giác DHE đều
d) Xét tam giác MIN vuoog tại N suy ra góc NIM = 600
góc IAN kề bù với góc NAM
suy ra góc NAI = 600
tam giác ANI có góc AIN=góc ANI=góc IAN = 600
suy ra tam giác ANI đều
suy ra AI = NI = 10cm
Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm M, N sao cho BM=MN=NC
a) CMR Tam giác AMN là tam giác cân
b) Kẻ MH vuông góc với AB(H thuộc AB), NK vuông góc với AC (K thuộc C). MH và NK cắt nhau tại O. Tam giác OMN là tam giác gì, vì sao?
c) Cho góc MAN = 60 độ. Tính số đo góc của tam giác ABC. Khi đó tam giác OMN là tam giác gì?
Cho tam giác cân AMN có \(\widehat{MAN}\)= 120o . Vẽ đường cao AH ( H∈ MN).
a) Chứng minh rằng AH là tia phân giác của góc MAM.
b) Kẻ HD vuông góc với AM ( D ∈ AM), kẻ HE vuông góc với AN ( E ∈AN). Chứng minh rằng ΔADE cân và DE//MN.
c) Chứng minh rằng Δ HDE đều.
d) Đường vuông góc với MN kẻ từ N cắt MA tại I. Tính độ dài của cạnh AI biết NI = 10cm
Xét tam giác AMN có góc MAN = 1200 suy ra tam giác AMN cân tại A
suy ra góc AMN=góc ANM = 300
Xét tam giác AHM và tam giác AHN
có AH chung
góc AHM = góc AHN = 900
AM=AN (vì tam giác AMN cân tại A)
suy ra tam giác AHM = tam giác AHN ( cạnh huyền-cạnh góc vuông)
suy ra góc MAH=góc HAN (hai góc tương ứng)
suy ra AH là tia phân giác của góc MAN
b) Xét tam giác vuong AHD và tam giác vuông AhE
có AH chung
góc hAD=góc HAE (CMT)
suy ra tam giác AHD = tam giác AHE ( cạnh huyền-góc nhọn) (1)
suy ra AD=AE suy ra tam giác ADE cân tại A
suy ra góc ADE=góc AED=300
suy ra góc ADE = góc AMN = 300
mà góc ADE đồng vị với góc AMN
suy ra DE//MN
c) tam giác HEN vuông tại E suy ra góc EHN = 600
tam giác HDM vuông tại D suy ra góc DHM = 600
mà góc DHM + góc DHE + góc EHN = 1800
suy ra góc DHE = 600 (2)
Từ (1) suy ra DH = HE suy ra tam giác DHE cân tại H (3)
Từ (2) và (3) suy ra tam giác DHE đều
d) Xét tam giác MIN vuoog tại N suy ra góc NIM = 600
góc IAN kề bù với góc NAM
suy ra góc NAI = 600
tam giác ANI có góc AIN=góc ANI=góc IAN = 600
suy ra tam giác ANI đều
suy ra AI = NI = 10cm
Cho tam giác ABC có B = 72 độ . Các tia phân giác của các góc A và C cắt nhau ở k
a) Tính AkC
b) Vẽ tia Am là phân giác góc ngoài tại A. Cắt Ck tại n
Vẽ tia Cn là phân giác góc ngoài tại C. Cắt Ak tại N
c) Chứng minh góc Am vuông góc Ak, Cn vuông góc với Ck
d) Chứng minh góc AmC bằng góc CnA
e) Khi góc B= x độ . Tính số đo AkC qua x
a: \(\widehat{KAC}+\widehat{KCA}=\dfrac{180^0-72^0}{2}=54^0\)
nên \(\widehat{AKC}=126^0\)
c: Vì Am và AK là hai tia phân giác của hai góc kề bù
nên Am⊥AK
Vì Cn và CK là hai tia phân giác của hai góc kề bù
nên Cn⊥CK
e: \(\widehat{KAC}+\widehat{KCA}=\dfrac{180^0-x}{2}\)
\(\Leftrightarrow\widehat{AKC}=\dfrac{360^0-180^0+x}{2}=\dfrac{180^0+x}{2}\)
Cho tam giác ABC vuông tại A có góc ABC=60độ.
a)Tính số đo góc ACB và so sánh độ dài hai cạnh AB, AC
b) Gọi M là trung điểm AC. Kẻ đường thẳng vuông góc với AC tại M, đường thẳng này cắt BC tại N, Chứng minh tam giác AMN= tam giác CMN
c)Chứng minh tam giác ABN là tam giác đều
d)Gọi G là giao điểm của AN và BM, Chứng minh BC=6.GN
cho tam giác abc cân tại a có ab = ac = 5cm , bc = 6cm . Phân giác của góc b cắt ac tại m , phân giác của góc c cắt ab tại n
a ) cm : mn // bc
b) am = ? , mc = ? , mn = ?
c) tính diện tích tam giác amn
a) Xét ΔABC có
BM là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AM}{AB}=\dfrac{CM}{BC}\)
hay \(\dfrac{AM}{CM}=\dfrac{AB}{BC}\)(1)
Xét ΔABC có
CN là đường phân giác ứng với cạnh AB(gt)
nên \(\dfrac{AN}{AC}=\dfrac{BN}{BC}\)
hay \(\dfrac{AN}{BN}=\dfrac{AC}{BC}\)(2)
Ta có: ΔABC cân tại A(gt)
nên AB=AC(3)
Từ (1), (2) và (3) suy ra \(\dfrac{AN}{BN}=\dfrac{AM}{MC}\)
hay MN//BC(Đpcm)
b) Ta có: \(\dfrac{AM}{AB}=\dfrac{CM}{BC}\)(cmt)
nên \(\dfrac{AM}{5}=\dfrac{CM}{6}\)
mà AM+CM=AC(M nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AM}{5}=\dfrac{CM}{6}=\dfrac{AM+CM}{5+6}=\dfrac{AC}{11}=\dfrac{5}{11}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{AM}{5}=\dfrac{5}{11}\\\dfrac{CM}{6}=\dfrac{5}{11}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AM=\dfrac{25}{11}\left(cm\right)\\CM=\dfrac{30}{11}\left(cm\right)\end{matrix}\right.\)
Xét ΔABC có MN//BC(cmt)
nên \(\dfrac{MN}{BC}=\dfrac{AM}{AC}\)(Hệ quả Định lí Ta lét)
\(\Leftrightarrow\dfrac{MN}{6}=\dfrac{25}{11}:5=\dfrac{25}{11}\cdot\dfrac{1}{5}=\dfrac{5}{11}\)
hay \(MN=\dfrac{30}{11}\left(cm\right)\)
c) Nửa chu vi của ΔABC là:
\(P_{ABC}=\dfrac{AB+AC+BC}{2}=\dfrac{5+5+6}{2}=\dfrac{16}{2}=8\left(cm\right)\)
Diện tích tam giác ABC là:
\(S_{ABC}=\sqrt{8\cdot\left(8-5\right)\cdot\left(8-5\right)\cdot\left(8-6\right)}=\sqrt{8\cdot3\cdot3\cdot2}=\sqrt{16\cdot9}=4\cdot3=12\left(cm^2\right)\)
Ta có: ΔANM∼ΔABC(gt)
nên \(\dfrac{S_{ANM}}{S_{ABC}}=\left(\dfrac{AM}{AC}\right)^2=\left(\dfrac{5}{11}\right)^2=\dfrac{25}{121}\)
\(\Leftrightarrow S_{ANM}=\dfrac{25}{121}\cdot12=\dfrac{300}{121}\left(cm^2\right)\)
1. cho tam giác ABC vuông tại A. tia phân giác của góc B cắt cạnh AC tại D. kẻ DM vuông góc với BC tại M.
a) Chứng minh: tam giác ABD = tam giác MBD.
b) Gọi giao điểm của DM và AB là E. chứng minh: tam giác BEC cân.
2. cho tam giác ABC có A = 130*. các đường trung trực của AB và AC cắt nhau tại O và cắt BC theo thứ tự M, N.
a) tính số đo gọc MAN.
b) chứng minh AO là phân giác của góc MAN.