Tìm a,b là số nguyên biết \(\left(a-1\right)^2\left(a^2+9\right)=4b^2+20b+25\)
Cho a,b là 2 số thực dương thoả mãn 9a^2+4b^2=9 Tìm min A = \(\left(1+a\right)\left(1+\frac{3}{2b}\right)+\left(1+\frac{2b}{3}\right)\left(1+\frac{1}{a}\right)\)
Cho a,b là 2 số thực dương thỏa mãn : \(9a^2+4b^2=9\)Tìm min A = \(\left(1+a\right)\left(1+\frac{3}{2b}\right)+\left(1+\frac{2b}{3}\right)\left(1+\frac{1}{a}\right)\)
Cho \(\dfrac{a^2-4b+1}{\left(a-2b\right)\left(2b-1\right)}\)là số nguyên. Chứng minh: \(\left|a-2b\right|\) là số chính phương?
Cho a,b là hai số thực dương thỏa mãn :\(9a^2+4b^2=9\)
Tìm giá trị nhỏ nhất của biểu thức \(A=\left(1+a\right)\left(1+\frac{3}{2b}\right)+\left(1+\frac{2b}{3}\right)\left(1+\frac{1}{a}\right)\)
Tìm số nguyên a biết \(\left(a^2-7\right)\left(a^2-10\right)\left(a^2-25\right)< 0\)
Ta có a2 - 25 < a2 - 10 < a2 - 7. Để (a2 - 7)(a2 - 10)(a2 - 25) < 0 thì ta có 2 trường hợp :
TH1 : 1 thừa số âm và 2 thừa số dương
=> a2 - 25 < 0 < a2 - 10 < a2 - 7\(\Rightarrow\hept{\begin{cases}a^2-25< 0\\a^2-10>0\end{cases}\Rightarrow\hept{\begin{cases}a^2< 25\\a^2>10\end{cases}}}\)=> a2 = 16 => a2 = -4 ; 4
TH2 : 3 thừa số đều âm
=> a2 - 25 < a2 - 10 < a2 - 7 < 0 => a2 - 7 < 0 => a2 < 7 =>\(a^2\in\) {0 ; 1 ; 4} =>\(a\in\){0 ; -1 ; 1 ; -2 ; 2}
Vậy\(a\in\){-4 ; -2 ; -1 ; 0 ; 1 ; 2 ; 4}
Xét \(a^2-25\ge0\) \(\Rightarrow\hept{\begin{cases}a^2-7>0\\a^2-10>0\end{cases}}\)
\(\Rightarrow\left(a^2-7\right)\left(a^2-10\right)\left(a^2-25\right)\ge0\left(l\right)\)
\(\Rightarrow a^2< 25\)
\(\Rightarrow a^2=\left(0,1,4,9,16\right)\)
Thế \(a^2=0\) \(\Rightarrow\left(a^2-7\right)\left(a^2-10\right)\left(a^2-25\right)=\left(-7\right)\left(-10\right)\left(-25\right)< 0\left(nhan\right)\)
Tương tự ta tìm được các giá trị a2 thỏa đề bài là: 0, 1, 4, 16
\(\Rightarrow a=\left(-4,-2,-1,0,1,2,4\right)\)
Đơn giản
Để a ^ 2 - 7 < 0 ; a ^ 2 - 10 < 0 ; a ^ 2 - 25 < 0 thì a ^ 2 < 7 hoặc 10 < a ^ 2 < 25
Suy ra a = ( 1 ; -1 ; 2 ; -2 ; 4 ; -4 )
Nhớ cho mình nha
cho \(9a^2+4b^2=9\). tìm GTNN của
A= \(\left(1+a\right)\left(1+\dfrac{3}{2b}\right)+\left(1+\dfrac{2b}{3}\right)\left(1+\dfrac{1}{a}\right)\)
cho a,b là 2 số nguyên dương .Tìm GTNN của biểu thức sau
\(P=\frac{a+b}{\sqrt{a\left(4a+5b\right)}+\sqrt{b\left(4b+5a\right)}}\)
\(P=\frac{3\left(a+b\right)}{\sqrt{9a\left(4a+5b\right)}+\sqrt{9b\left(4b+5a\right)}}\)
\(\ge\frac{3\left(a+b\right)}{\frac{9a+4a+5b}{2}+\frac{9b+4b+5a}{2}}=\frac{1}{3}\)
Ta có :
\(P^1=\frac{a+b}{\sqrt{a\left(4a+5b\right)}+\sqrt{b\left(4b+5a\right)}}.\)
\(\Leftrightarrow P^2=\frac{3\left(a+b\right)}{\sqrt{9a\left(4a+5b\right)}+\sqrt{9b\left(4b+5a\right)}}\)
Mà ta thấy biểu thức \(P^2\ge\frac{3\left(a+b\right)}{\frac{9a+4a+5b}{2}+\frac{9b+4b+5a}{2}}\)
\(=\frac{1}{3}\)
Vậy giá trị nhỏ nhất của biểu thức \(P=\frac{1}{3}\)
\(\)
a) Tìm tập hợp các số nguyên x, biết rằng\(4\dfrac{5}{9}:2\dfrac{5}{18}-7< x< \left(3\dfrac{1}{5}:3,2+4,5.1\dfrac{31}{45}\right):\left(-21\dfrac{1}{2}\right)\)
b) tìm x, biết \(\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{6}\right|+\left|x+\dfrac{1}{12}\right|+\left|x+\dfrac{1}{20}\right|+....+\left|x+\dfrac{1}{110}\right|-11x\)
c)Tính gt biểu thức \(C=2x^3-5y^3+2015\) tại x,y thỏa mãn \(\left|x-1\right|+\left(y+2\right)^{20}=0\)
Cho a, b > 0. Chứng minh \(\frac{a^2+b^2}{\left(4a+4b\right)\left(3a+4b\right)}\ge\frac{1}{25}\)
Thay \(a=b=1\Rightarrow\frac{2}{8.7}\ge\frac{1}{25}\Leftrightarrow\frac{2}{56}\ge\frac{1}{25}\) (sai)