tim x,y,z biết:
x+x = 0
tìm x,y,z thuộc N biết:x/7 + y/11 + z/13=0.(946053)
Tham khảo nhé !!!
Câu hỏi của ❃๖ۣۜY๖ۣۜi๖ۣۜn ⓛ ⓞ ⓥ ⓔ ♡
Tìm x,y,z biết:X/Z+Y+1=Y/X+Z+1=Z/X+Y-1= X+Y+Z
Tìm x,y,z biết:x(x+Y+Z)=-5;y(x+Y+z)=9 và z(x+y+z)=5
Ta có: x(x+y+z)=(-5) (1)
y(x+y+z)=9 (2)
z(x+y+z)=5 (3)
\(\Rightarrow\) x(x+y+z) + y(x+y+z)+z(x+y+z)=-5+9+5
\(\Leftrightarrow\left(x+y+z\right)\left(x+y+z\right)=9\)
\(\Leftrightarrow\left(x+y+z\right)^2=9=3^2=\left(-3\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x+y+z=3\left(4\right)\\x+y+z=-3\left(5\right)\end{matrix}\right.\)
+ Với x+y+z=3 thì:
Từ (1) và (4) \(\Rightarrow\) x=\(\frac{-5}{3}\)
Từ (2) và (4) \(\Rightarrow\) y=3
Từ (3) và (4) \(\Rightarrow z=\frac{5}{3}\)
+ Với x+y+z=-3
Từ (1) và (5) \(\Rightarrow x=\frac{5}{3}\)
Từ (2) và (5) \(\Rightarrow y=-3\)
Từ (3) và (5) \(\Rightarrow z=\frac{5}{-3}\)
Vậy: \(\left(x;y;z\right)\in\left\{\left(\frac{-5}{3};3;\frac{5}{3}\right);\left(\frac{5}{3};-3;\frac{5}{-3}\right)\right\}\)
tìm x,y,z biết:x+y-3/z=y+z+2.x=x+z+1/y=1/x+y+z
Tìm x;y;z biết:
x/2=y/3=z/5 và x + y - z = 10
2 + 3 - 5 = 0 (ở dưới mẫu) thì vô lí nên đề sai
Sửa đề: x+y+z=10
Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà x+y+z=10
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y+z}{2+3+5}=\dfrac{10}{10}=1\)
Do đó: x=2; y=3; z=5
Tìm x;y;z biết:x/z+y+1=y/x+z+1=z/x+y-2=x+y+z
ta có \(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\)
=>\(\frac{x+y+z}{2x+2y+2z+1+1-2}=x+y+z\)
=>\(\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
=>\(\frac{1}{2}=x+y+z\)
Tìm số Z x, biết:
x . 2 - 5 . x = 0
Ttìm x,y,z biết:x/2=y/3 và y/5=z/7 và x+y+z=98
có :
x/2=y/3suy ra x/10=y/15 1
y/5=z/suy ra y/15=z/21 2
từ 1 và 2 suy ra x/10=y/15=z/21
áp dung tính chất dãy tỉ số bằng nhau ta có :
x/10=y/15=z/21=x+y+z/10+15+21=98/46=49/23
suy ra x/10=49/23
Tìm x,y,z biết:x/3=y/2=z/-2 và x^2 +3y^2-z^2=17
Đặt: \(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{z}{-2}=k\)
\(\Rightarrow x=3k;y=2k;z=-2k\)
Ta có: \(x^2+3y^2-z^2=17\)
\(\Rightarrow\left(3k\right)^2+3\cdot\left(2k\right)^2-\left(-2k\right)^2=17\)
\(\Rightarrow9k^2+3\cdot4k^2-4k^2=17\)
\(\Rightarrow17k^2=17\)
\(\Rightarrow k^2=1\)
\(\Rightarrow k=\pm1\)
Khi k = 1 thì:
\(\left\{{}\begin{matrix}x=3\\y=2\\z=-2\end{matrix}\right.\)
Khi k = -1 thì:
\(\left\{{}\begin{matrix}x=-3\\y=-2\\z=2\end{matrix}\right.\)
Tìm x,y thuộc Z, biết:
X×Y+2×X–3×Y=9
xy + 2x - 3y = 9
\(\Leftrightarrow\) 2x + xy - 3y - 6 = 3
\(\Leftrightarrow\) x(2 + y) - 3(y + 2) = 3
\(\Leftrightarrow\) (2 + y)(x - 3) = 3
Vì x, y \(\in\) Z nên (2 + y)(x - 3) \(\in\) Z. Ta có bảng sau:
x - 3 | 3 | 1 | -1 | -3 |
2 + y | 1 | 3 | -3 | -1 |
x | 6(TM) | 4(TM) | 2(TM) | 0(TM) |
y | -1(TM) | 1(TM) | -5(TM) | -3(TM) |
Vậy phương trình có nghiệm (x; y) = {(6; 1); (4; 1); (2; -5); (0; -3)}
Chúc bn học tốt!