cho 1/a+1/b+1/c=0.Tính giá trị của M=b+c/a+c+a/b+a+b/c
Cho 1/a + 1/b +1/c=0.Tính giá trị của biểu thức M=bc/a^2 +ac/b^2 +ab/c^2 với a,b,c khác 0
Lời giải:
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0$
$\Rightarrow ab+bc+ac=0$
Đặt $ab=x, bc=y, ac=z$ thì $x+y+z=0$
Có:
$M=\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}$
$=\frac{b^3c^3+a^3c^3+a^3b^3}{(abc)^2}$
$=\frac{x^3+y^3+z^3}{xyz}=\frac{(x+y)^3-3xy(x+y)+z^3}{xyz}$
$=\frac{(-z)^3-3xy(-z)+z^3}{xyz}$
$+\frac{-z^3+3xyz+z^3}{xyz}=\frac{3xyz}{xyz}=3$
Cho 3 số a,b,c khác 0 và a+b-2023c/c = b+c-2023a/a = c+a-2023b/b Tính giá trị của biểu thức M = (1+b/a)(1+c/b)(1+a/c) Giúp mik với
a,Chứng minh bđt:
1,(a-1)(a-3)(a-4)(a-6)+9 ≥ 0
2,a2/b+c-a+b2/c+a-b+c2/a+b-c ≥ a+b+c (a,b,c là độ dài 3 cạnh tam giác)
b,Cho a2-4a+1=0.Tính giá trị của biểu thức A=a4+a2+1/a2
c,Cho a,b,c thỏa mãn 1/a+1/b+1/c=1/a+b+c.Tính giá trị của biểu thức M=(a5+b5)(b7+c7)(c2013+a2013)
1: (a-1)(a-3)(a-4)(a-6)+9
=(a^2-7a+6)(a^2-7a+12)+9
=(a^2-7a)^2+18(a^2-7a)+81
=(a^2-7a+9)^2>=0
b: \(A=\dfrac{a^4-4a^3+a^2+4a^3-16a+4+16a-3}{a^2}=\dfrac{16a-3}{a^2}\)
a^2-4a+1=0
=>a=2+căn 3 hoặc a=2-căn 3
=>A=11-4căn 3 hoặc a=11+4căn 3
Cho a+b+c=0 và a^2+b^2+c^2=1. Tính giá trị của biểu thức: M=a^4+b^4+c^4
Ta có: a+b+c=0
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow2\left(ab+bc+ac\right)=0-1=-1\)
hay \(ab+bc+ac=-\dfrac{1}{2}\)
\(\Leftrightarrow\left(ab+bc+ac\right)^2=\dfrac{1}{4}\)
\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2ab^2c+2abc^2+2a^2bc=\dfrac{1}{4}\)
\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(b+c+a\right)=\dfrac{1}{4}\)
\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2=\dfrac{1}{4}\)
Ta có: \(M=a^4+b^4+c^4\)
\(\Leftrightarrow M=a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2-2a^2b^2-2a^2c^2-2b^2c^2\)
\(\Leftrightarrow M=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+a^2c^2+b^2c^2\right)\)
\(\Leftrightarrow M=1^2-2\cdot\dfrac{1}{4}=1-\dfrac{1}{2}=\dfrac{1}{2}\)
Vậy: \(M=\dfrac{1}{2}\)
Ta có : \(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)=1\) ( * )
\(\Rightarrow ab+bc+ac=-\dfrac{1}{2}\)
Lại có : \(\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ca\right)^2\) ( suy ra từ * )
\(\Rightarrow a^4+b^4+c^4=2\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{2}\)
Vậy ...
Cho ABC khác 0 và a+b+c = 0. Tính giá trị của biểu thức A = (1+a/b) (1+b/c) (1+c/a)
Bạn ơi! ABC khác 0 thì làm sao ạ+b+c=0 được bạn
Bài làm :
Vì :
\(a+b+c=0\)
\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}}\)
Ta có :
\(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
\(\Rightarrow A=\frac{b+a}{b}.\frac{c+b}{c}.\frac{a+c}{a}\)
\(\Rightarrow A=\left(-\frac{c}{b}\right).\left(\frac{-a}{c}\right).\left(\frac{-b}{a}\right)\)
\(\Rightarrow A=-\frac{abc}{abc}\)
\(\Rightarrow A=-1\)
Vậy A=-1
cho b+c-5/a=a+c+2/b=a+b+3/c=1/a+b+c(với a,b,c≠0,a+b+c≠0)
Tính giá trị biểu thức M=(a-3b)(b-c)(3c-a)
cho b+c-5/a=a+c+2/b=a+b+3/c=1/a+b+c(với a,b,c≠0,a+b+c≠0)
Tính giá trị biểu thức M=(a-3b)(b-c)(3c-a)
Cho ba số a, b, c thỏa mãn a,b,c khác 0, a+b+c khác 0 và 1/a+1/b+1/c=1/a+b+c. tính giá trị của biểu thức:
Q= (a^27 + b^27)(b^41 + c^41)(c^2019 + a^2019)
1.Cho a,b,c khác 0 và a+b+c = 0.Tính giá trị của biểu thức
Q=1/a^2+b^2-c^2 + 1/b^2+c^2-a^2 + 1/a^2+c^2-b^2
2.Cho hai số thực a,b thỏa mản a>b và ab=2.Tìm giá trị nhỏ nhất của biểu thức M=a^2+b^2/a-b.
Giúp tớ lẹ lẹ nhé ! Cảm ơn nhiều nhiều ! :):):)
từ giả thiết ta có
a+b+c=0
<=> a=-(b+c0
a2=b2 +c2 +2bc
tương tự b2=a2+c2+2ac
c2=a2+b2+2ab
thay vào Q ta đc
\(Q=\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{a^2+c^2-b^2}\)
\(Q=\frac{1}{a^2+b^2-a^2-b^2-2ab}+\frac{1}{b^2+c^2-b^2-c^2-2bc}+\frac{1}{a^2+c^2-a^2-c^2-2ac}\)
\(Q=\frac{-1}{2ab}-\frac{1}{2bc}-\frac{1}{2ac}\)
\(Q=\frac{-b-a-c}{2abc}\)
\(Q=\frac{-\left(a+b+c\right)}{2abc}\)
\(Q=0\)
Vậy với a,b,c khác 0, a+b+c=0 thì Q=0
Cho các số a b c , , thỏa mãn abc 0 và 1 1 1 1 3 a b b c c a a b c c a b . Tính giá trị của biểu thức S a b c 2011.