\(^{\left(x+3\right)^{2004}}\)+ \(^{\left(y-1\right)^{2006}}\)= 0
Tính giá trị biểu thức:
A= \(\dfrac{\text{(a+1)(a+2)(a+3)....(a+2003)(a+2004)}}{\left(b+5\right)\left(b+6\right)\left(b+7\right)....\left(b+2006\right)\left(b+2007\right)}\) tại a= 0, b= -4
B= \(\dfrac{1}{\left(x-5\right)\left(y+7\right)}+\dfrac{1}{\left(x-4\right)\left(y+8\right)}+....+\dfrac{1}{\left(x-1\right)\left(y+11\right)}\)tại x= 6, y= -5
Tìm x,y biết
\(\left(x-\frac{3}{5}\right)^{2004}+\left(y+2,9\right)^{2006}\le0\)
TÍNH GIÁ TRỊ CỦA \(D=\frac{x\left(x^2-yz\right)+y\left(y^2-zx\right)+z\left(z^2-xy\right)}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\) TẠI \(x=2004^{2005};y=2005^{2006};z=2006^{2007}\)
D= \(\frac{x^3+y^3+z^3-3xyz}{2\left(x^2+y^2+z^2-xy-yz-zx\right)}\) tử = (x+y)3+z3 -3xy(x+y) - 3xyz =(x+y+z)(x2+2xy+y2-xz- yz+z2)-3xy(x+y+z) = (x+y+z)(x2+y2+z2-xy-yz-zx)
do đó D=\(\frac{x+y+z}{2}\)
TÍNH GIÁ TRỊ CỦA \(D=\frac{x\left(x^2-yz\right)+y\left(y^2-zx\right)+z\left(z^2-xy\right)}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\) TẠI \(x=2004^{2005};y=2005^{2006};z=2006^{2007}\)
Cho a, b, c là các số thực khác 0 và \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1\). Tính giá trị của biểu thức \(P=\left(a^{2004}-b^{2004}\right)\left(b^{2005}+c^{2005}\right)\left(c^{2006}-a^{2006}\right)\).
\(\left(x-\frac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}=0\)0
\(\left(x-\frac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}=0\)
Do \(\left(x-\frac{1}{5}\right)^{2004};\left(y+0,4\right)^{100};\left(z-3\right)^{678}\ge0\forall x,y,z\)
\(\Rightarrow\left(x-\frac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}=0\)
\(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{5}=0\\y+0,4=0\\z-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0,2\\y=-0,4\\z=3\end{cases}}\)
....
Tham khảo :
https://olm.vn/hoi-dap/detail/243970516929.html
Cho a,b,c là các số thực khác 0 và \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1\)
Tính giá trị của biểu thức: \(P=\left(a^{2004}-b^{2004}\right)\left(b^{2005}+c^{2005}\right)\left(c^{2006}-a^{2006}\right)\)
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1\)
\(\Leftrightarrow\left(a+b+c\right)\left(ab+ac+bc\right)=abc\)
\(\Leftrightarrow a\left(ab+ac+bc\right)+\left(b+c\right)\left(ab+ac+bc\right)-abc=0\)
\(\Leftrightarrow a\left(ab+ac+bc-bc\right)+\left(b+c\right)\left(ab+ac+bc\right)=0\)
\(\Leftrightarrow a^2\left(b+c\right)+\left(b+c\right)\left(ab+ac+bc\right)=0\)
\(\Leftrightarrow\left(a^2+ab+ac+bc\right)\left(b+c\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=-c\\a=-b\\b=-c\end{matrix}\right.\)
- Nếu \(a=-c\Rightarrow a^{2006}=c^{2006}\Rightarrow c^{2006}-a^{2006}=0\Rightarrow P=0\)
- Nếu \(a=-b\Rightarrow a^{2004}=b^{2004}\Rightarrow a^{2004}-b^{2004}=0\Rightarrow P=0\)
- Nếu \(b=-c\Rightarrow b^{2005}=-c^{2005}\Rightarrow b^{2005}+c^{2005}=0\Rightarrow P=0\)
Vậy \(P=0\)
tìm x và y
a) \(\left(x-1\right)^2+\left(y+3\right)^2=0\)
b) \(2\left(x-5\right)^4+5\left|2y-7\right|^5=0\)
c) \(3\left(x-2y\right)^{2004}+4\left|y+\frac{1}{2}\right|=0\)
d) \(\left|x+3y-1\right|+\left(2y-\frac{1}{2}\right)^{2000}=0\)
a. x=1 y= -3
b. x=5 y=7/2
c. x= -1 y= -1/2
d. x=1/4 y= 1/4
a) x = 1
y = -3
b) x = 5
y = 7/2
c) x = -1
y = -1/2
d) x = 1/4
y = 1/4
nha bn
tìm x và y biết
a) \(\left|x-y-2\right|+\left|y+3\right|=0\)
b) \(\left|x-3y\right|^{2007}+\left|y+4\right|^{2008}=0\)
c) \(\left(x+y\right)^{2006}+2007\left|y-1\right|=0\)
d) \(\left|x-y-5\right|+2007\left(y-3\right)^{2008}=0\)