Cho tam giác ABC vuông tạ A. Vẽ đường tròn ( O; AC/2) cắt BC tại I Kẻ OM vuông góc BC tại M. AM cắt ( O) tại N. Từ I kẻ HI vuông góc AC tại H. Gọi K là trung điểm HI.Tiếp tuyến tại I của (O) cắt AB tại E. CM: C,K,E thẳng hàng
Cho đường tròn tâm O đường kính BC, A di chuyển trên đường tròn .Vẽ đường phân giác góc A của tam giác ABC cắt đường tròn tại K vẽ AH vuông góc BC. Cho AH=x Tính diện tích tam giác AKH theo R và x
cho tam giác ABC cân tại A nội tiếp đường tròn (O). vẽ trung tuyến AM của tam giác ABC. gọi B' đối xứng với B qua O .Vẽ qua A vuông góc với CB' và cắt BC' tại H chứng minh AH là tiếp tuyến của đường tròn (O)
cho tam giác ABC vuông tại A, đường tròn tâm (O) đường kính AC cắt BC tại K, vẽ dây cung AD của đường tròn tâm (O) vuông góc với BO tại H
cho tam giác ABC vuông tạ A có AB = 6cm, ac = 8cm. Tính bán kính đường tròn ngoại tiếp R và bán kính đường tròn nội tiếp tam giác
trong tgiac vuông tâm đường tròn ngoại tiếp chính là trung điểm cạnh huyền
Áp dụng định lý pytago vào tgiac vuông ABC ta có :
\(BC^2\)=\(AC^2\)+\(AB^2\)
\(BC^2\)=\(8^2\)+\(6^2\)
\(BC^2\)=100
BC=10
Vậy bán kính đường tròn ngoại tiếp tgiac ABC là:
10:2=5cm
cho tam giác ABC vuông tạ A có AB = 6cm, ac = 8cm. Tính bán kính đường tròn ngoại tiếp R và bán kính đường tròn nội tiếp tam giác
Gọi bk ngoại tiếp là R còn nôi tiếp là r ;p là 1/2 chu vi (= a+b+c/2)
ra có R=BC/2=5
mà S=pr=(6+8+10)/2r=6*8/2=>r=2
Cho tam giác ABC vuông tại A ( AB <AC) vẽ đường tròn (O) đường kính AC , đường tròn (O) cắt BC tại D .Vẽ tiếp tuyến BE của (o) ( E là tiếp điểm) .BO cắt AE tại H
a) Chứng Minh : Tứ giác OB vuông AE và BH.BO=BD.BC
Chứng minh DHOC là tứ giác nội tiếp và BHD=OHC
Giup mk ạ =((((
a: Xét (O) có
BA,BE là tiếp tuyến
=>BA=BE
mà OA=OE
nên OB là trung trực của AE
=>OB vuông góc AE
=>BH*BO=BA^2
ΔABC vuông tại A có AD vuông góc BC
nên BD*BC=BA^2
=>BH*BO=BD*BC
b: BH*BO=BD/BC
=>BH/BC=BD/BO
=>góc BHD=góc BCO
=>góc DHO+góc DCO=180 độ
=>DHOC nội tiếp
Cho tam giác ABC nội tiếp trong đường tròn tâm O (AB>AC). Tia phân giác AD của góc A cắt đường tròn tâm O tại M, phân giasc ngoài của góc A cắt đường tròn tâm O tại N
a) MN vuông góc với BC
b) Vẽ đường tròn tâm O ngt tam giác ACD. Chứng minh C,I,N thẳng hàng
c) Chứng minh tâm giác ACI đồng dạng tam giác AMO
Cho tam giác ABC không cân nội tiếp đường tròn (O) , AD là đường cao của tam giác ABC . Vẽ BE vuông góc với OA tại E , CF vuông góc với OA tại F . Chứng minh rằng M là tâm đường tròn ngoại tiếp tam giác DEF.
giúp tui câu này đc ko chiều tui thi r cho tam giác ABC cân tại A nội tiếp đường tròn (O). vẽ trung tuyến AM của tam giác ABC. gọi B' đối xứng với B qua O .Vẽ qua A vuông góc với CB' và cắt BC' tại H chứng minh AH là tiếp tuyến của đường tròn (O)