Tìm x
2 mũ 5x : 2 mũ 3x = 4
bài 4; tính giá trị biểu thức
A = ( 5x mũ 5 + 5x mũ 4 ) : 5x mũ 2 - ( 2x mũ 4 - 8x mũ 2 -6 - 6x + 12 ) : ( 2x - 4 ) tại x = - 2
B = ( 3x mũ 4 - x mũ 2 - 2x ) : ( 3x mũ 2 + 3x + 2 ) + ( x mũ 4 - x mũ 2 ) : ( x mũ 2 - x ) tại x = - 5
tinh giá trị biểu thức
a, A = ( 5x mũ 5 + 5x mũ 4 ) : 5x mũ 2 - ( 2x mũ 4 - 8x mũ 2 - 6x + 12 ) : ( 2x - 4 ) tại x = -2
b, B = ( 3x mũ 4 - x mũ 2 - 2x ) : ( 3x mũ 2 + 3x + 2 ) + ( x mũ 4 - x mũ 2 ) : ( x mũ 2 - x ) tại x = -5
\(A=\left(5x^5+5x^4\right):5x^2-\left(2x^4-8x^2-6x+12\right):\left(2x-4\right)\)
Phép chia thứ nhất:
\(\left(5x^5+5x^4\right):5x^2=x^3+x^2\)
Phép chia thứ hai:
Vậy A = ( x^3 + x^2 ) - ( x^3 + 2x^2 - 3 ) = -x^2 + 3
Với x = -2 thì: A = -(-2)^2 + 3 = -4 + 3 = -1
B) bạn làm tương tự nhé
Bài 3: Tìm nghiệm của các đa thức sau:
a) ( x-2) (4-3x) b) x mũ 2 - 4 c) x mũ 2 + căn 7
d) x mũ 2 + 5x e) x mũ 2 + 5x - 6 f) x mũ 2 +x +1
h) 7x mũ 2 + 11x +4
a) Để tìm nghiệm của đa thức (x-2)(4-3x), ta giải phương trình (x-2)(4-3x) = 0. Khi đó, ta có hai trường hợp:
x - 2 = 0 hoặc 4 - 3x = 0 x = 2 hoặc x = 4/3Vậy nghiệm của đa thức (x-2)(4-3x) là x = 2 hoặc x = 4/3.
b) Để tìm nghiệm của đa thức x^2 - 4, ta giải phương trình x^2 - 4 = 0. Khi đó, ta có:
(x-2)(x+2) = 0 x = 2 hoặc x = -2Vậy nghiệm của đa thức x^2 - 4 là x = 2 hoặc x = -2.
c) Để tìm nghiệm của đa thức x^2 + √7, ta không thể giải phương trình x^2 + √7 = 0 vì không có số nào bình phương bằng √7. Vì vậy, đa thức này không có nghiệm trong tập số thực.
d) Để tìm nghiệm của đa thức x^2 + 5x, ta giải phương trình x(x+5) = 0. Khi đó, ta có:
x = 0 hoặc x = -5Vậy nghiệm của đa thức x^2 + 5x là x = 0 hoặc x = -5.
e) Để tìm nghiệm của đa thức x^2 + 5x - 6, ta giải phương trình (x+6)(x-1) = 0. Khi đó, ta có:
x + 6 = 0 hoặc x - 1 = 0 x = -6 hoặc x = 1Vậy nghiệm của đa thức x^2 + 5x - 6 là x = -6 hoặc x = 1.
f) Để tìm nghiệm của đa thức x^2 + x + 1, ta không thể giải phương trình x^2 + x + 1 = 0 bằng phương pháp giải bình phương trình bởi vì hệ số của x^2 là 1 và không thể phân tích thành tích của hai số nguyên tố khác nhau. Vì vậy, đa thức này không có nghiệm trong tập số thực.
h) Để tìm nghiệm của đa thức 7x^2 + 11x + 4, ta giải phương trình 7x^2 + 11x + 4 = 0 bằng cách sử dụng công thức giải phương trình bậc hai. Khi đó, ta có:
Δ = b^2 - 4ac = 11^2 - 474 = 121 - 112 = 9 x1 = (-b + √Δ) / 2a = (-11 + 3) / 14 = -4/7 x2 = (-b - √Δ) / 2a = (-11 - 3) / 14 = -7/2Vậy nghiệm của đa thức 7x^2 + 11x + 4 là x = -4/7 hoặc x = -7/2.
(tham khảo
20:22
a) Để tìm nghiệm của đa thức (x-2)(4-3x), ta giải phương trình (x-2)(4-3x) = 0. Khi đó, ta có hai trường hợp:
x - 2 = 0 hoặc 4 - 3x = 0 x = 2 hoặc x = 4/3Vậy nghiệm của đa thức (x-2)(4-3x) là x = 2 hoặc x = 4/3.
b) Để tìm nghiệm của đa thức x^2 - 4, ta giải phương trình x^2 - 4 = 0. Khi đó, ta có:
(x-2)(x+2) = 0 x = 2 hoặc x = -2Vậy nghiệm của đa thức x^2 - 4 là x = 2 hoặc x = -2.
c) Để tìm nghiệm của đa thức x^2 + √7, ta không thể giải phương trình x^2 + √7 = 0 vì không có số nào bình phương bằng √7. Vì vậy, đa thức này không có nghiệm trong tập số thực.
d) Để tìm nghiệm của đa thức x^2 + 5x, ta giải phương trình x(x+5) = 0. Khi đó, ta có:
x = 0 hoặc x = -5Vậy nghiệm của đa thức x^2 + 5x là x = 0 hoặc x = -5.
e) Để tìm nghiệm của đa thức x^2 + 5x - 6, ta giải phương trình (x+6)(x-1) = 0. Khi đó, ta có:
x + 6 = 0 hoặc x - 1 = 0 x = -6 hoặc x = 1Vậy nghiệm của đa thức x^2 + 5x - 6 là x = -6 hoặc x = 1.
f) Để tìm nghiệm của đa thức x^2 + x + 1, ta không thể giải phương trình x^2 + x + 1 = 0 bằng phương pháp giải bình phương trình bởi vì hệ số của x^2 là 1 và không thể phân tích thành tích của hai số nguyên tố khác nhau. Vì vậy, đa thức này không có nghiệm trong tập số thực.
h) Để tìm nghiệm của đa thức 7x^2 + 11x + 4, ta giải phương trình 7x^2 + 11x + 4 = 0 bằng cách sử dụng công thức giải phương trình bậc hai. Khi đó, ta có:
Δ = b^2 - 4ac = 11^2 - 474 = 121 - 112 = 9 x1 = (-b + √Δ) / 2a = (-11 + 3) / 14 = -4/7 x2 = (-b - √Δ) / 2a = (-11 - 3) / 14 = -7/2Vậy nghiệm của đa thức 7x^2 + 11x + 4 là x = -4/7 hoặc x = -7/2.
tham khảo
20:2220:22
a) Để tìm nghiệm của đa thức (x-2)(4-3x), ta giải phương trình (x-2)(4-3x) = 0. Khi đó, ta có hai trường hợp:
x - 2 = 0 hoặc 4 - 3x = 0 x = 2 hoặc x = 4/3Vậy nghiệm của đa thức (x-2)(4-3x) là x = 2 hoặc x = 4/3.
b) Để tìm nghiệm của đa thức x^2 - 4, ta giải phương trình x^2 - 4 = 0. Khi đó, ta có:
(x-2)(x+2) = 0 x = 2 hoặc x = -2Vậy nghiệm của đa thức x^2 - 4 là x = 2 hoặc x = -2.
c) Để tìm nghiệm của đa thức x^2 + √7, ta không thể giải phương trình x^2 + √7 = 0 vì không có số nào bình phương bằng √7. Vì vậy, đa thức này không có nghiệm trong tập số thực.
d) Để tìm nghiệm của đa thức x^2 + 5x, ta giải phương trình x(x+5) = 0. Khi đó, ta có:
x = 0 hoặc x = -5Vậy nghiệm của đa thức x^2 + 5x là x = 0 hoặc x = -5.
e) Để tìm nghiệm của đa thức x^2 + 5x - 6, ta giải phương trình (x+6)(x-1) = 0. Khi đó, ta có:
x + 6 = 0 hoặc x - 1 = 0 x = -6 hoặc x = 1Vậy nghiệm của đa thức x^2 + 5x - 6 là x = -6 hoặc x = 1.
f) Để tìm nghiệm của đa thức x^2 + x + 1, ta không thể giải phương trình x^2 + x + 1 = 0 bằng phương pháp giải bình phương trình bởi vì hệ số của x^2 là 1 và không thể phân tích thành tích của hai số nguyên tố khác nhau. Vì vậy, đa thức này không có nghiệm trong tập số thực.
h) Để tìm nghiệm của đa thức 7x^2 + 11x + 4, ta giải phương trình 7x^2 + 11x + 4 = 0 bằng cách sử dụng công thức giải phương trình bậc hai. Khi đó, ta có:
Δ = b^2 - 4ac = 11^2 - 474 = 121 - 112 = 9 x1 = (-b + √Δ) / 2a = (-11 + 3) / 14 = -4/7 x2 = (-b - √Δ) / 2a = (-11 - 3) / 14 = -7/2Vậy nghiệm của đa thức 7x^2 + 11x + 4 là x = -4/7 hoặc x = -7/2.
20:22Cho 3 đa thức:
M(x)=3x mũ 3+ x mũ 2+ 4x mũ 4- x- 3x mũ 3+5x mũ 4 +x mũ 2 - 6; N(x)=-x mũ 2-x mũ 4+ 4x mũ 3- x mũ 2-5x mũ 3 + 3x + 1 +x; P(x)= 1 + 2x mũ 5 - 3x mũ 2 + x mũ 5 + 3x mũ 3 - x mũ 4- 2x
Giup mình nhanh nha!!!
Thêm nữa câu a) Tính: M(x) + N(x)+ P(x)
B) Tính M(x) - N (x) - P(x)
ok rồi giúp mình với nha
bài 2:
P(X)=3x mũ 2 +7+ 2x mũ 4 -3x mũ 2 -4-5x+2x mũ 3
Q(x)=-3x mũ 3 +2x mũ 2 -x mũ 4 +x+x mũ 3 + 4x-2 + 5x mũ 4
a, thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm dần của biến
\(P\left(x\right)=3x^2+7+2x^4-3x^2-4-5x+2x^3\)
\(=2x^4+2x^3+\left(3x^2-3x^2\right)-5x-4+7\)
\(=2x^4+2x^3-5x+3\)
\(Q\left(x\right)=-3x^3+2x^2-x^4+x+x^3+4x-2+5x^4\)
\(=\left(5x^4-x^4\right)+\left(-3x^3+x^3\right)+2x^2+\left(x+4x\right)-2\)
\(=4x^4-2x^3+2x^2+5x-2\)
Cho hai đa thức: P(x)=3x mũ 3-2x+2x mũ 2+7x+8-x mũ 4 Q(x)=2x mũ 2-3x mũ 3+3x mũ 2-5x+5x mũ 4 a.Thu gọn,sắp xếp theo luỹ thừa giảm dần của của biến và tìm bậc của mỗi đơn thức b.Tính R(x)=P(x)+Q(x) c.Chứng tỏ R(x) luôn có giá trị dương với mọi giá trị của biến
a) \(P\left(x\right)=3x^3-2x+2x^2+7x+8-x^4)\)
\(P\left(x\right)=3x^3(-2x+7x)+2x^2+8-x^4)\)
\(P\left(x\right)=3x^3+5x+2x^2+8-x^4)\)
\(P\left(x\right)=-x^4+3x^3+2x^2+5x+8\)
\(Q\left(x\right)=2x^2-3x^3+3x^2-5x^4\)
\(Q\left(x\right)=(2x^2+3x^2)-3x^3-5x^4\)
\(Q\left(x\right)=5x^2-3x^3-5x^4\)
\(Q\left(x\right)=-5x^4-3x^2+5x^2\)
b)
\(P\left(x\right)+Q\left(x\right)=(3x^3-2x+2x^2+7x+8-x^4)+\left(2x^2-3x^3+3x^2-5x^4\right)\)
\(P\left(x\right)+Q\left(x\right)=3x^3-2x+2x^2+7x+8-x^4+2x^2-3x^3+3x^2-5x^4\)
\(P\left(x\right)+Q\left(x\right)=\left(3x^3-3x^3\right)+\left(-2x+7x\right)+\left(2x^2+2x^2+3x^2\right)+8+\left(-x^4-5x^4\right)\)\(P\left(x\right)+Q\left(x\right)=5x+7x^2+8-6x^4\)
Vậy: \(R\left(x\right)\) \(=5x+7x^2+8-6x^4\)
c. \(R\left(x\right)\) \(=5x+7x^2+8-6x^4\)
\(=5x+7x^2+4+4-6x^4\)
\(=\) \((12x-4)^2+4\ge4-6x^4\)
Câu c MIK KHÔNG CHẮC LÀ ĐÚNG
Bài 1: Chứng minh giá trị của biểu thức không phụ thuộc vào giá trị của biến
(-x mũ 4 -x mũ 3)+(x mũ 4 +2x mũ 3 +5x mũ 2 +3x)+(-5x mũ 2 -3x - x mũ 3)
`@` `\text {Ans}`
`\downarrow`
`(-x^4 - x^3) + (x^4 + 2x^3 + 5x^2 + 3x) + (-5x^2 - 3x - x^3)`
`= -x^4 - x^3 + x^4 + 2x^3 + 5x^2 + 3x - 5x^2 - 3x - x^3`
`= (-x^4+x^4) + (-x^3 + 2x^3 - x^3) + (5x^2 - 5x^2) + (3x - 3x)`
`= 0 + 0 + 0 + 0`
`= 0`
Vậy, giá trị của biểu thức trên không phụ thuộc vào giá trị của biến.
`@` `\text {Kaizuu lv uuu}`
a)3x mũ 2 y -6x
b)x mũ 2-4
c)5x mũ 2 + 5xy - x mũ 2 -2xy- y mũ 2
d) 6x mũ 2 +5x -4
\(a,3x^2y-6x=3x\left(xy-2\right)\)
\(b,x^2-4=x^2-2^2=\left(x-2\right)\left(x+2\right)\)
\(c,5x^2+5xy-x^2-2xy-y^2\)
\(=5x\left(x+y\right)-\left(x+y\right)\left(x+y\right)\)
\(=\left(x+y\right)\left(5x-x+y\right)\)
\(=\left(x+y\right)\left(4x+y\right)\)
bài 1; sắp sếp các đa thức sau theo luỹ thừa giảm dần của biến và thực hiện phép tính chia
a, ( 6x - 5x mũ 2 - 15 + 2x mũ 3 ) : ( 2x - 5 )
b, ( x mũ 3 + 2x mũ 4 - 5x mũ 2 - 3 - 3x ) : ( x mũ 2 - 3 )
c, ( 5x mũ 2 + 15 - 3x mũ 2 - 9x ) : ( 5 - 3x )
d, ( x mũ 3 + x mũ 5 + x mũ 2 + 1 ) : ( x mũ 3 + 1 )
e, ( 3 - 2x + 2x mũ 3 + 5x mũ 2 ) : ( 2x mũ 2 - x + 1 )
tính nghiệm x) 1 mũ 2 -9x+8 2)3x mũ 2 -7x+4 3)2x mũ 2+5x-7 4) 3x mũ 2-9x+6 5)x mũ 2 +2x-3
1: x^2-9x+8=0
=>(x-1)(x-8)=0
=>x=1 hoặc x=8
2: 3x^2-7x+4=0
=>3x^2-3x-4x+4=0
=>(x-1)(3x-4)=0
=>x=4/3 hoặc x=1
3: 2x^2+5x-7=0
=>(2x+7)(x-1)=0
=>x=1 hoặc x=-7/2
4: 3x^2-9x+6=0
=>x^2-3x+2=0
=>x=1 hoặc x=2
5: x^2+2x-3=0
=>(x+3)(x-1)=0
=>x=-3 hoặc x=1
`@` `\text {Answer}`
`\downarrow`
`1)`
\(x^2 - 9x + 8?\)
\(x^2-9x+8=0\)
`<=>`\(x^2-8x-x+8=0\)
`<=> (x^2 - 8x) - (x - 8) = 0`
`<=> x(x - 8) - (x-8) = 0`
`<=> (x-1)(x-8) = 0`
`<=>`\(\left[{}\begin{matrix}x-1=0\\x-8=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `S = {1; 8}`
`2)`
\(3x^2 - 7x + 4 =0\)
`<=> 3x^2 - 3x - 4x + 4 = 0`
`<=> (3x^2 - 3x) - (4x - 4) = 0`
`<=> 3x(x - 1) - 4(x - 1) = 0`
`<=> (3x - 4)(x-1) = 0`
`<=>`\(\left[{}\begin{matrix}3x-4=0\\x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}3x=4\\x=1\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=1\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `S = {4/3; 1}`
`3)`
\(2x^2 + 5x - 7=0\)
`<=> 2x^2 - 2x + 7x - 7 = 0`
`<=> (2x^2 - 2x) + (7x - 7) = 0`
`<=> 2x(x - 1) + 7(x - 1) = 0`
`<=> (2x+7)(x-1) = 0`
`<=>`\(\left[{}\begin{matrix}2x+7=0\\x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}2x=-7\\x=1\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=1\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `S = {-7/2; 1}.`
`4)`
\(3x^2 - 9x + 6 = 0\)
`<=> 3x^2 - 3x - 6x + 6 = 0`
`<=> (3x^2 - 3x) - (6x - 6) = 0`
`<=> 3x(x - 1) - 6(x - 1) = 0`
`<=> (3x - 6)(x - 1) = 0`
`<=>`\(\left[{}\begin{matrix}3x-6=0\\x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}3x=6\\x=1\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `S = {1; 2}.`
`5)`
\(x^2 + 2x - 3=0\)
`<=> x^2 + 3x - x - 3 = 0`
`<=> (x^2 - x) + (3x - 3) = 0`
`<=> x(x - 1) + 3(x - 1) = 0`
`<=> (x+3)(x-1) = 0`
`<=>`\(\left[{}\begin{matrix}x+3=0\\x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `S = {1; -3}.`