cho p , p+20 , p+40 là các số nguyên tố
CM: p+80 là số nguyên tố
làm được tick nhieuuuu
Cho p; p + 20; p + 40 là các số nguyên tố. Chứng tỏ rằng p + 80 cũng là số nguyên tố.
Xét các trường hợp:
-Nếu p = 2, khi đó p + 20 = 22 không phải số nguyên tố, loại
-Nếu p = 3 thì p + 20 = 23 ; p + 40 = 43 ; p + 80 = 83 đều là các số nguyên tố.
-Nếu p > 3 thì p có dạng 3k + 1 hoặc 3k + 2
+) Với p = 3k + 1 thì p + 20 = (3k + 1) + 20 = 3k + 21 = 3k + 3.7 = 3.(k + 7), số này lớn hơn 3 mà chia hết cho 3 nên không phải số nguyên tố, loại
+) Với p = 3k + 2 thì p + 40 = (3k + 2) + 40 = 3k + 42 = 3k + 3.14 = 3.(k + 14), số này lớn hơn 3 mà chia hết cho 3 nên không phải số nguyên tố, loại.
Vậy suy ra điều phải chứng minh với p = 3
1/ Cho P và P+14 là các số nguyên tố. Chứng minh rằng P+17 là hợp số
2/ Cho P và P+20, P+40 là các số nguyên tố. Chứng minh rằng P + 80 là số nguyên tố
3/ Tìm số nguyên tố P sao cho P+6 - P+12 ; P+18 ; P+24 là số nguyên tố
1) Ta có : P và P+14 là số nguyên tố thì P là số lẻ
nên P+17 là số chẵn suy ra P+17 là hợp số.
Cho P;P+20;P+40 là các số nguyên tố
CMR : P+80 là hợp số
Xét các trường hợp
-Nếu p = 2, khi đó p + 20 = 22 không phải số nguyên tố, loại
-Nếu p = 3 thì p + 20 = 23 ; p + 40 = 43 ; p + 80 = 83 đều là các số nguyên tố.
-Nếu p > 3 thì p có dạng 3k + 1 hoặc 3k + 2
+) Với p = 3k + 1 thì p + 20 = (3k + 1) + 20 = 3k + 21 = 3k + 3.7 = 3.(k + 7), số này lớn hơn 3 mà chia hết cho 3 nên không phải số nguyên tố, loại
+) Với p = 3k + 2 thì p + 40 = (3k + 2) + 40 = 3k + 42 = 3k + 3.14 = 3.(k + 14), số này lớn hơn 3 mà chia hết cho 3 nên không phải số nguyên tố, loại.
Vậy suy ra điều phải chứng minh với p = 3
Cho p,p+20,p+40 là số nguyên tố.Chứng minh p+80 là số nguyên tố.
+)Nếu p=3
=> p+20=3+20=23 là số nguyên tố
=> p+40=3+40=43 là số nguyên tố
=> p+80=3+80=83 là số nguyên tố
=> p=3 thõa mãn
+)Nếu p khác 3 =>p=3k+1 hoặc p=3k+2
-Với p=3k+1 => p+20=3k+1+20=3k+21 chia hết cho 3
do p+20>3 => p+20 là hợp số
-Với p=3k+2 =>p+40=3k+2+40=3k+42 chia hết cho 3
do p+40>3 => p+40 là hợp số
=> p khác 3 không thõa mãn
Vậy p;p+20;p+40 là số nguyên tố thì p+80 cũng là số nguyên tố.
+)Nếu p=3
=> p+20=3+20=23 là số nguyên tố
=> p+40=3+40=43 là số nguyên tố
=> p+80=3+80=83 là số nguyên tố
=> p=3 thõa mãn
+)Nếu p khác 3 =>p=3k+1 hoặc p=3k+2
-Với p=3k+1 => p+20=3k+1+20=3k+21 chia hết cho 3
do p+20>3 => p+20 là hợp số
-Với p=3k+2 =>p+40=3k+2+40=3k+42 chia hết cho 3
do p+40>3 => p+40 là hợp số
=> p khác 3 không thõa mãn
Vậy p;p+20;p+40 là số nguyên tố thì p+80 cũng là số nguyên tố.
Cho P,P+20,P+40 là số nguyên tố. Chứng minh rằng: P+80 là số nguyên tố
p là số nguyên tố => p > 1
p=2 => p+20 =22 => mâu thuẫn đề bài
p=3 => p+20=23 ; p+40=43 dều là số nguyên tố => p + 80 = 83 cũng là số nguyên tố
p> 3 => p có dạng 3k + 1 hoặc 3k + 2 ( p khác 3k vì 3k chia hết cho 3 không nguyên tố )
với p = 3k +1 => p + 20 = 3k + 21 = 3 (k +7) chia hết cho 3 mâu thuẫn đề bài
với p = 3k +2 => p + 40 = 3k + 42 = 3(k + 14) chia hết cho 3 mâu thuẫn đề bài
TỪ đó ta có p ; p+20 ; p+40 nguyên tố khi và chi khi p=3 lúc đó p+80 là số nguyên tố
P là số nguyên tố => P>1
xét P là số chẵn :
=> P = 2 mà 2+20=22 là hợp số
=> Ko thỏa mãn
xét P là số lẻ :
TH1: P=3 thì P+20=3 ; P+40=43
=> Thỏa mãn
TH2: P>3 thì P thuộc 1 trong 2 dạng:
3k+1 và 3k+2 (k thuộc N)
Nếu P= 3k+1 thì : P+20=(3k+1)+20=3k+21=3(k+7)
Vì số nguyên tố có và chỉ có tích là 1 và chính nó Mà 3>1;(k+7)>hoặc=7 và >1 nên 3(k+7) là hợp số
=> Ko thỏa mãn
P= 3k+2 thì : P+40=(3k+2)+40=3k+42=3(k+14) Vì số nguyên tố có và chỉ có tích là 1 và chính nó
Mà 3>1;(k+14)>hoặc=14 và >1 nên 3(k+14) là hợp số
=> Ko thỏa mãn
=> P=3
Mà 3+80=83;83 là một số nguyên tố
=>P+80 là số nguyên tố
tìm các số nguyên tố p để p,p+20,p+40 la so nguyen to . Chứng minh p+80 là số nguyên tố
Thế nào là số nguyên tố, hợp số. Tìm các số nguyên tố nhỏ hơn 20. Thế nào là hai số nguyên tố cùng nhau? cho ví dụ ?
Tui Tick cho , nhớ kết bạn nha hôm nào cũng được tick luôn
dân ta phải biết sử ta
cái gì ko biết cứ tra google
số nguyên tố là tập hợp những số tự nhiên chỉ có thể chia hết cho 1 và chính nó. Theo đó, nếu một số tự nhiên chỉ chia hết cho 1 và chính nó thì đó là số nguyên tố. Đặc biệt, bạn cần lưu ý rằng có hai trường hợp không được xếp là số nguyên tố, đấy chính là số 0 và số 1.
Định nghĩa: nếu một số tự nhiên chỉ chia hết cho 1 và chính nó thì đó là số nguyên tố. Đặc biệt, bạn cần lưu ý rằng có hai trường hợp không được xếp là số nguyên tố, đấy chính là số 0 và số 1.
Số nguyên tố nhỏ hơn 20 là: 2,3,5,7,11,13,17,19
Cho 20 số nguyên có tổng 6 số bất kì trong các số đã cho là 1 số nguyên âm.Hỏi tổng 20 số đó là số nguyên âm hay số nguyên dương?
helpppp
Cho \(p;p+20;p+40\)là các số nguyên tố. Chứng minh rằng \(p+80\in P\)
Xét các trường hợp:
- Nếu p = 2 khi đó p + 20 =22 không phải sô nguyên tố ( loại )
- Nếu p = 3 khi đó p + 20 = 23; p + 40 =43; p + 80 = 83 đều là các số nguyên tố
- Nếu p > 3 thì p có dạng 3k + 1 hoặc 3k + 2
+) Với p = 3k + 1 thì p + 20 = ( 3k + 1 ) + 20 = 3k + 21 = 3k + 3 . 7 = 3 . ( k +7 ), số này lớn hơn 3 mà chia hết cho 3 nên không phải số nguyên tố ( loại )
+ ) Với p = 3k + 2 thì p + 40 = ( 3k + 2 ) + 40 = 3k + 42 = 3k + 3 . 14 = 3 . ( k + 14 ), số này lớn hơn 3 mà chia hết cho 3 nên không phải là số nguyên tố ( loại )
Vậy suy ra p = 3 ( đpcm )