Cho \(x=\sqrt[3]{5-\sqrt{17}}+\sqrt[3]{5+\sqrt{17}}\)
CMR : \(x^3-6x-10=0\)
chứng minh : x= \(\sqrt[3]{5-\sqrt{17}}+\sqrt[3]{5+\sqrt{17}}\) là nghiệm của phương trình \(x^3-6x-10=0\)
\(x=\sqrt[3]{5-\sqrt{17}}+\sqrt[3]{5+\sqrt{17}}\)
\(\Leftrightarrow x^3=5-\sqrt{17}+5+\sqrt{17}+3\left(\sqrt[3]{5-\sqrt{17}}+\sqrt[3]{5+\sqrt{17}}\right)\sqrt[3]{5-\sqrt{17}}\sqrt[3]{5+\sqrt{17}}\)
\(\Leftrightarrow x^3=10+3x\sqrt[3]{\left(5-\sqrt{17}\right)\left(5+\sqrt{17}\right)}\)
\(\Leftrightarrow x^3=10+3x\sqrt[3]{8}\)\(\Leftrightarrow x^3=10+6x\)
\(\Leftrightarrow x^3-6x-10=0\)
Hay ta co DPCM
chứng minh x= \(\sqrt[3]{5-\sqrt{17}}+\sqrt[3]{5+\sqrt{17}}\) là nghiệm của phương trình \(x^3-6x-10=0\)
Chứng minh : \(x=\sqrt[3]{5-\sqrt{17}}+\sqrt[3]{5+\sqrt{17}}\) là nghiệm của phương trình :
\(x^3-6x-10=0\)
\(x^3=10+3x\sqrt[3]{\left(5-\sqrt{17}\right)\left(5+\sqrt{17}\right)}=10+6x\)
Thay vào -> dpcm
\(x=\sqrt[3]{5-\sqrt{17}}+\sqrt[3]{5+\sqrt{17}}\)
\(\Leftrightarrow x^3=5-\sqrt{17}+5+\sqrt{17}\)
\(+3\left(\sqrt[3]{5-\sqrt{17}}+\sqrt[3]{5+\sqrt{17}}\right)\sqrt[3]{5-\sqrt{17}}\sqrt[3]{5+\sqrt{17}}\)
\(\Leftrightarrow x^3=10+3x\sqrt[3]{\left(5-\sqrt{17}\right)\left(5+\sqrt{17}\right)}\)
\(\Leftrightarrow x^3=10+3x\sqrt[3]{8}\Leftrightarrow x^3=10+6x\)
\(\Leftrightarrow x^3-6x-10=0\)
\(\Rightarrow\) Đpcm
Chúc bạn học tốt !!!
Cho a=\(\sqrt[3]{3+\sqrt{17}}\)+\(\sqrt[3]{3-\sqrt{17}}\). F(n)=(x³+6x-5)³. Tính F(a)
đây là toán lớp 9 mà
trả lời chỉ để lấy tích thời mọi người tích giùm hihi
Cho hàm số f ( x ) = ( x3 + 6x - 5 )2018 . Tính f ( a ) vói \(a=\sqrt[3]{3+\sqrt{17}}+\sqrt[3]{3-\sqrt{17}}\) .
Cho P(x) = (x3 + 6x - 5)2016
Tìm P(x) với x = \(\sqrt[3]{3+\sqrt{17}+}+\sqrt[3]{3-\sqrt{17}}\)
\(x^3=3+\sqrt{17}+3-\sqrt{17}+3a.b\left(a+b\right)\) dài quá đặt a,b
a.b=-2
x^3=6-6(a+b)=6-6x
=>x^3+6x-5=6-5=1
KL: P(x)=12016 =1
Tính giá trị của biểu thức M = (x3+6x-5) với x= \(\sqrt[3]{3+\sqrt{17}}+\sqrt[3]{3-\sqrt{17}}\)
\(x^3\)=\(3+\sqrt{17}+3-\sqrt{17}+3.\sqrt[3]{\left(3+\sqrt{17}\right)\left(3-\sqrt{17}\right)}.x\)
=\(6+3\sqrt[3]{-8}x=6-6x\)
\(\Rightarrow x^3+6x-6=0\)
M=\(x^3+6x-5=\left(x^3+6x-6\right)+1=0+1=1\)
Cho hàm số y=f(x)=(x3+6x-5)2020
Tính f(a) khi \(a=\sqrt[3]{3+\sqrt{17}}+\sqrt[3]{3-\sqrt{17}}\)
\(a^3=6+3a\sqrt[3]{\left(3+\sqrt{17}\right)\left(3-\sqrt{17}\right)}\)
\(\Rightarrow a^3=6-6a\)
\(\Rightarrow a^3+6a-5=1\)
\(\Rightarrow f\left(a\right)=1^{2020}=1\)
với x= \(\sqrt[3]{3+\sqrt{17}}+\sqrt[3]{3-\sqrt{17}}\). rút gọn B=\(\left(x^3+6x-5\right)^{2012}\)
\(x^3=6+3x.\sqrt[3]{3^2-17}=6-6x\)
\(\Leftrightarrow x^3+6x-6=0\)
\(\Rightarrow B=\left(x^3+6x-6+1\right)^{2012}=1^{2012}=1\)