Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Băng Mikage
Xem chi tiết
Anh Nguyễn
Xem chi tiết
Nguyễn Thị Mỹ Lệ
Xem chi tiết
Cold Wind
20 tháng 12 2017 lúc 16:10

Câu hỏi của Vịtt Tên Hiền - Toán lớp 9 | Học trực tuyến

tham khảo thử xem

EDOGAWA CONAN
3 tháng 8 2018 lúc 22:10

tuong tự

khanhvan nguyen
Xem chi tiết
Nguyễn Hữu Tiến
7 tháng 7 2017 lúc 20:35

=0 bạn

khanhvan nguyen
7 tháng 7 2017 lúc 20:39

thank nhé, chứng minh x+y=0 ra phải không?

Nguyễn Thiều Công Thành
7 tháng 7 2017 lúc 20:55

nhân liên hợp ra

Phan Thị Hương Ly
Xem chi tiết
Mysterious Person
3 tháng 8 2018 lúc 20:14

vì bài toán bảo tính nên ta chỉ cần tìm \(x;y\) thỏa mãn tất cả các điều kiện bài toán rồi thế vào là được

ta có : \(x=0;y=0\) thõa mãn tất cả các điều kiện bài toán

thế vào \(S\) ta có : \(S=x+y=0+0=0\) vậy \(S=0\)

Phùng Khánh Linh
3 tháng 8 2018 lúc 22:04

\(\left(x+\sqrt{x^2+2018}\right)\left(y+\sqrt{y^2+2018}\right)=2018\)

\(\left(x^2+2018-x^2\right)\left(y+\sqrt{y^2+2018}\right)=2018\left(\sqrt{x^2+2018}-x\right)\)\(y+\sqrt{y^2+2018}=\sqrt{x^2+2018}-x\)

\(x+y=\sqrt{x^2+2018}-\sqrt{y^2+2018}\left(1\right)\)

Làm tương tự : \(x+y=\sqrt{y^2+2018}-\sqrt{x^2+2018}\left(2\right)\)

Cộng vế với vế \(\left(1;2\right)\) , ta có : \(x+y=0\)

EDOGAWA CONAN
3 tháng 8 2018 lúc 22:10

0

Dương Thị Thu Ngọc
Xem chi tiết
Doraemon
30 tháng 8 2018 lúc 21:05

Đề thiếu bạn ơi

Đệ Ngô
Xem chi tiết
Vo Thi Minh Dao
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 12 2020 lúc 19:02

\(m\ne\pm1\)

ĐKXĐ: \(x\in\left[-2018;2018\right];x\ne0\)

Miền xác định của hàm là miền đối xứng

Để ĐTHS nhận Oty làm trục đối xứng \(\Leftrightarrow\) hàm chẵn

\(\Leftrightarrow\) Với mọi m ta phải có: \(f\left(-x\right)=f\left(x\right)\) 

\(\Leftrightarrow\dfrac{m\sqrt{2018+x}+\left(m^2-2\right)\sqrt{2018-x}}{\left(m^2-1\right)x}=\dfrac{m\sqrt{2018-x}+\left(m^2-2\right)\sqrt{2018+x}}{-\left(m^2-1\right)x}\)

\(\Leftrightarrow\left(m^2+m-2\right)\sqrt{2018+x}=\left(-m^2-m+2\right)\sqrt{2018-x}\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2+m-2=0\\-m^2-m+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=1\left(loại\right)\\m=-2\end{matrix}\right.\)

Nguyễn Thu Trà
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 12 2018 lúc 17:56

\(x\left(\sqrt{2019}+\sqrt{2018}\right)+y\left(\sqrt{2019}-\sqrt{2018}\right)=2019\sqrt{2019}+2018\sqrt{2018}\)

\(\Leftrightarrow x\left(\sqrt{2019}+\sqrt{2018}\right)+y\left(\sqrt{2019}-\sqrt{2018}\right)=2018\left(\sqrt{2019}+\sqrt{2018}\right)+\sqrt{2019}\)

\(\Leftrightarrow x+y.\left(\sqrt{2019}-\sqrt{2018}\right)^2=2018+\sqrt{2019}\left(\sqrt{2019}-\sqrt{2018}\right)\)

\(\Leftrightarrow x+y\left(4037-2\sqrt{2019.2018}\right)=4037-\sqrt{2019.2018}\)

\(\Leftrightarrow x+4037.y-4037=2y\sqrt{2019.2018}-\sqrt{2019.2018}\)

\(\Leftrightarrow x+4037y-4037=\left(2y-1\right).\sqrt{2019.2018}\)(1)

Do \(x;y\) hữu tỉ \(\Rightarrow x+4037y-4037\)\(2y-1\) đều là số hữu tỉ

\(\sqrt{2019.2018}\) là số vô tỉ

\(\Rightarrow\)đẳng thức (1) xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}2y-1=0\\x+4037y-4037=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y=\dfrac{1}{2}\\x=\dfrac{4037}{2}\end{matrix}\right.\)