Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 9 2018 lúc 7:04

Minz Ank
Xem chi tiết
Nguyễn Xuân Nghĩa (Xin...
16 tháng 1 2021 lúc 19:20

b) 34n + 1 + 2 = 34n . 3 + 2 = (...1) . 3 + 2 = (....3) + 2 = (....5) ⋮ 5

c) 24n + 1 + 3 = 24n . 2 + 3 = (...6) . 2 + 3 = (....2) + 3 = (....5) ⋮ 5

d) 24n + 2 + 1 = 24n . 2+ 1 = (...6) . 4 + 1 = (...4) + 1 = (....5) ⋮ 5

e) 92n+1   + 1 = 92n . 9 + 1 = (...1) . 9 + 1 = (....9) + 1 = (....0) ⋮ 10

Hok tốt vui

Camerman
15 tháng 7 2024 lúc 10:35

Chỉ

Huỳnh Tuấn Kiệt
Xem chi tiết
Ngô Hương Trà
13 tháng 10 2023 lúc 22:21

Để chứng minh rằng biểu thức 34n+1 + 2.32n+2 - 21 chia hết cho 64, ta cần sử dụng phương pháp toán học gọi là "chứng minh bằng quy nạp". Bước 1: Kiểm tra điều kiện ban đầu - Khi n = 0, ta có: - Biểu thức ban đầu = 34(0) + 1 + 2.32(0) +2 -21 = -20. - Vì -20 không chia hết cho số nguyên dương nào khác của số nguyên tố lớn nhất trong các số nguyên tố nhỏ hơn hoặc bằng căn bậc hai của số này (tức là căn bậc hai của |64|), nên không thể kết luận rằng biểu thức trên chia hết cho 64. Bước 2: Giả sử giả thiết quy nạp - Giả sử với một giá trị nguyên dương k (k ≥0), biểu thức sau: P(k):=34k+1 +2.32k+2-21 Chia hết cho số nguyên tố lớn nhất trong các số nguyên tố nhỏ hơn hoặc bằng căn bậc hai của |64|. Bước 3: Chứng minh công thức quy nạp - Ta cần chứng minh rằng nếu P(k) chia hết cho 64, thì P(k+1) cũng chia hết cho 64. - Giả sử P(k) chia hết cho 64, tức là tồn tại một số nguyên dương a sao cho: P(k) = 64a. - Ta cần chứng minh rằng tồn tại một số nguyên dương b sao cho: P(k+1) = 34(k+1)+1 +2.32(k+1)+2 -21 = 34k +35 +2.32k +36 -21 = (34k+1 +2.32k+2 -21) + (34*34 + 2*32*36). Vì biểu thức trong ngoặc đơn là giá trị cố định không phụ thuộc vào k, ta có thể viết lại biểu thức trên thành: P(k+1) = (P(k)) + C, trong đó C là một giá trị cố định không phụ thuộc vào k. - Như vậy, ta có: P(k+1) = (P(K)) + C = (64a) + C. - Với a và C là các số nguyên dương, ta có thể viết lại biểu thức trên thành: P(K+1)=b * |64|, trong đó b=a+C. Bước 4: Kết luận Vì đã xác nhận rằng nếu P(k) chia hết cho 64 thì P(k+1) cũng chia hết cho 64, và với giá trị ban đầu n=0, biểu thức không chia hết cho 64, ta có thể kết luận rằng biểu thức 34n+1 +2.32n+2 -21 không chia hết cho 64 với mọi số nguyên dương n.

đúng hay sai e không biết em làm trên chat gpt

Hồng Ngọc
Xem chi tiết
Trang Trần Vũ Yên
25 tháng 12 2021 lúc 15:59

cái này thì chưa bt

☆Châuuu~~~(๑╹ω╹๑ )☆
25 tháng 12 2021 lúc 16:03

Tham khảo 

undefined

:vvv
Xem chi tiết
Bùi Quỳnh Hoa
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 8 2018 lúc 8:47

a) Tính

Giải sách bài tập Toán 11 | Giải sbt Toán 11

b) Viết lại

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta có thể dự đoán Giải sách bài tập Toán 11 | Giải sbt Toán 11

nguyen tien dung
Xem chi tiết
ngonhuminh
22 tháng 12 2016 lúc 17:41

viết lại đề cho chuẩn 

nhìn mình chẳng hiểu n là số mũ hay là nhân, hay có gạch trên đầu...

nguyen tien dung
22 tháng 12 2016 lúc 17:44

à 

n la so mu nha ban giai mik voi 

ngonhuminh
22 tháng 12 2016 lúc 18:07

a)

\(74^n-1\) đề sai vơi n lẻ không chia hết cho 5 xem lại và viết cho chuẩn đi

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 11 2019 lúc 13:13

lim 2 n + 1 − n + 3 4 n − 5 = lim n .   2 + 1 n − n .    1 + 3 n n .    4 − 5 n = lim 2 + 1 n − 1 + 3 n 4 − 5 n = 2 − 1 2

Chọn đáp án C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 3 2019 lúc 13:03

 Kiểm tra với n = 1 sau đó biểu diễn

Giải sách bài tập Toán 11 | Giải sbt Toán 11