Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
KiA Phạm
Xem chi tiết
KiA Phạm
31 tháng 5 2021 lúc 10:12

help mình vs plz

dragon blue
31 tháng 5 2021 lúc 10:30

.....

HoàngMiner
Xem chi tiết
Nguyễn Quốc Việt
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 12 2021 lúc 10:03

\(\left(1+\dfrac{1}{n}\right)^n=C_n^0+C_n^1.\dfrac{1}{n}+C_n^2.\dfrac{1}{n^2}+...+C_n^n.\dfrac{1}{n^n}\)

\(=1+1+C_n^2.\dfrac{1}{n^2}+C_n^3.\dfrac{1}{n^3}+...+C_n^n.\dfrac{1}{n^n}\)

\(=2+C_n^2.\dfrac{1}{n^2}+C_n^3.\dfrac{1}{n^3}+...+C_n^n.\dfrac{1}{n^n}>2\)

Mặt khác:

\(C_n^k.\dfrac{1}{n^k}=\dfrac{n!}{k!\left(n-k\right)!.n^k}=\dfrac{\left(n-k+1\right)\left(n-k+2\right)...n}{n^k}.\dfrac{1}{k!}< \dfrac{n.n...n}{n^k}.\dfrac{1}{k!}=\dfrac{n^k}{n^k}.\dfrac{1}{k!}=\dfrac{1}{k!}\)

\(< \dfrac{1}{k\left(k-1\right)}=\dfrac{1}{k-1}-\dfrac{1}{k}\)

Do đó:

\(C_n^2.\dfrac{1}{n^2}+C_n^3.\dfrac{1}{n^3}+...+C_n^n.\dfrac{1}{n^n}< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}=1-\dfrac{1}{n}< 1\)

\(\Rightarrow2+C_n^2.\dfrac{1}{n^2}+C_n^3.\dfrac{1}{n^3}+...+C_n^n.\dfrac{1}{n^n}< 2+1=3\) (đpcm)

Jack Viet
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 12 2021 lúc 10:44

- Với \(n=4\Rightarrow3^3>4.6\) (đúng)

- Giả sử BĐT đã cho đúng với \(n=k\ge4\) hay \(3^{k-1}>k\left(k+2\right)\) 

- Ta cần chứng minh nó cũng đúng với \(n=k+1\) hay: \(3^k>\left(k+1\right)\left(k+3\right)\)

Thật vậy, do \(k\ge4\Rightarrow k-3>0\), ta có:

\(3^k=3.3^{k-1}>3k\left(k+2\right)=3k^2+6k=\left(k^2+4k+3\right)+\left(2k^2+2k-3\right)\)

\(=\left(k+1\right)\left(k+3\right)+2k^2+k+\left(k-3\right)>\left(k+1\right)\left(k+3\right)\) (đpcm)

Trần Thuận Ngân
Xem chi tiết
Phạm Hồ Thanh Quang
Xem chi tiết
Dương Kim Chi
Xem chi tiết
Hồ Thu Giang
Xem chi tiết
Trần Thiên Kim
1 tháng 12 2016 lúc 18:37

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(=\frac{1}{4}-\frac{1}{2\left(n+1\right)\left(n+2\right)}\) \(< \frac{1}{4}\)

đỗ thị bạch mai
7 tháng 5 2017 lúc 15:30

bài này tớ chịu!

đỗ thị bạch mai
7 tháng 5 2017 lúc 15:31

gianroigianroigianroigianroigianroigianroigianroi

bucminhbucminhbucminhbucminhbucminhbucminhbucminh

Vô Danh Tiểu Tốt
Xem chi tiết