\(\frac{1}{n\sqrt{n+1}}+\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
\(\frac{1}{n\sqrt{n+1}}+\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Chứng minh với mọi số nguyên dương n, ta có (1 + 1/n)^n < 3
Chứng minh với mọi số nguyên dương n lẻ, n > 1 ta có \(1+2^n+3^n+...+n^n⋮n^2+n\)
Chứng minh rằng với mọi số nguyên dương n, ta có \(\left(1+\frac{1}{n}\right)^n< 3\)
Chứng minh rằng với mọi số nguyên dương n, p ta có :
\(\dfrac{1}{\left(1+1\right)\sqrt[p]{1}}+\dfrac{1}{\left(2+1\right)\sqrt[p]{2}}+...+\dfrac{1}{\left(n+1\right)\sqrt[p]{n}}\) < p
Chứng minh rằng với mọi số nguyên dương n, p ta có :
\(\dfrac{1}{\left(1+1\right)\sqrt[p]{1}}+\dfrac{1}{\left(2+1\right)\sqrt[p]{2}}+...+\dfrac{1}{\left(n+1\right)\sqrt[p]{n}}\) < p
Chứng minh rằng với mọi số nguyên dương n ta có \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)
Cho số nguyên dương n. Chứng minh rằng với mọi số thực dương x, ta có bất đẳng thức:
\(\frac{x^n\left(x^{x+1}+1\right)}{x^n+1}\le\left(\frac{x+1}{2}\right)^{2n+1}\)
chứng minh rằng với mọi số nguyên dương n ta có:
\(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)
Chứng minh rằng:
a) Với mọi số nguyên dương n ta có \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 1\)