Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
pro
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 5 2021 lúc 17:34

\(VT=\dfrac{1}{\left(x-y\right)^2}+\dfrac{x^2+y^2}{x^2y^2}=\dfrac{1}{\left(x-y\right)^2}+\dfrac{\left(x-y\right)^2+2xy}{x^2y^2}\)

\(VT=\dfrac{1}{\left(x-y\right)^2}+\dfrac{\left(x-y\right)^2}{x^2y^2}+\dfrac{2}{xy}\ge2\sqrt{\dfrac{\left(x-y\right)^2}{\left(x-y\right)^2x^2y^2}}+\dfrac{2}{xy}=\dfrac{2}{\left|xy\right|}+\dfrac{2}{xy}\ge\dfrac{2}{xy}+\dfrac{2}{xy}=\dfrac{4}{xy}\)

Vô danh
Xem chi tiết
Trần Tuấn Hoàng
2 tháng 4 2022 lúc 22:17

2.

\(4n^3+n+3=4n^3+2n^2+2n-2n^2-n-1+4=2n\left(2n^2+n+1\right)-\left(2n^2+n+1\right)+4\)-Để \(\left(4n^3+n+3\right)⋮\left(2n^2+n+1\right)\) thì \(4⋮\left(2n^2+n+1\right)\)

\(\Leftrightarrow2n^2+n+1\in\left\{1;-1;2;-2;4;-4\right\}\) (do n là số nguyên)

*\(2n^2+n+1=1\Leftrightarrow n\left(2n+1\right)=0\Leftrightarrow n=0\) (loại) hay \(n=\dfrac{-1}{2}\) (loại)

*\(2n^2+n+1=-1\Leftrightarrow2n^2+n+2=0\) (phương trình vô nghiệm)

\(2n^2+n+1=2\Leftrightarrow2n^2+n-1=0\Leftrightarrow n^2+n+n^2-1=0\Leftrightarrow n\left(n+1\right)+\left(n+1\right)\left(n-1\right)=0\Leftrightarrow\left(n+1\right)\left(2n-1\right)=0\)

\(\Leftrightarrow n=-1\) (loại) hay \(n=\dfrac{1}{2}\) (loại)

\(2n^2+n+1=-2\Leftrightarrow2n^2+n+3=0\) (phương trình vô nghiệm)

\(2n^2+n+1=4\Leftrightarrow2n^2+n-3=0\Leftrightarrow2n^2-2n+3n-3=0\Leftrightarrow2n\left(n-1\right)+3\left(n-1\right)=0\Leftrightarrow\left(n-1\right)\left(2n+3\right)=0\)\(\Leftrightarrow n=1\left(nhận\right)\) hay \(n=\dfrac{-3}{2}\left(loại\right)\)

-Vậy \(n=1\)

 

 

Trần Tuấn Hoàng
2 tháng 4 2022 lúc 22:52

1. \(x^2+y^2=z^2\)

\(\Rightarrow x^2+y^2-z^2=0\)

\(\Rightarrow\left(x-z\right)\left(x+z\right)+y^2=0\)

-TH1: y lẻ \(\Rightarrow x-z;x+z\) đều lẻ.

\(x+3z-y=x+z-y+2x\) chia hết cho 2. \(\Rightarrow\)Hợp số.

-TH2: y chẵn \(\Rightarrow\)1 trong hai biểu thức \(x-z;x+z\) chia hết cho 2.

*Xét \(\left(x-z\right)⋮2\):

\(x+3z-y=x-z+4z-y\) chia hết cho 2. \(\Rightarrow\)Hợp số.

*Xét \(\left(x+z\right)⋮2\):

\(x+3z-y=x+z+2z-y\) chia hết cho 2 \(\Rightarrow\)Hợp số.

 

Lê Bảo Ngọc
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 10 2021 lúc 17:40

Chứng minh bằng phép biến đổi tương đương:

1.

\(\Leftrightarrow4+x+y\ge4\sqrt{x+y}\)

\(\Leftrightarrow x+y-4\sqrt{x+y}+4\ge0\)

\(\Leftrightarrow\left(\sqrt{x+y}-2\right)^2\ge0\) (luôn đúng)

Vậy BĐT đã cho đúng

2.

\(\Leftrightarrow\dfrac{y+z}{xyz}\ge\dfrac{4}{x^2+yz}\)

\(\Leftrightarrow\left(y+z\right)\left(x^2+yz\right)\ge4xyz\)

\(\Leftrightarrow x^2y+x^2z+y^2z+z^2y-4xyz\ge0\)

\(\Leftrightarrow y\left(x^2+z^2-2xz\right)+z\left(x^2+y^2-2xy\right)\ge0\)

\(\Leftrightarrow y\left(x-z\right)^2+z\left(x-y\right)^2\ge0\) (đúng)

Đỗ Thùy Trang
Xem chi tiết
Mysterious Person
23 tháng 8 2018 lúc 6:45

ta có : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}\)

\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}-\dfrac{1}{\sqrt{xy}}-\dfrac{1}{\sqrt{yz}}-\dfrac{1}{\sqrt{zx}}\ge0\)

\(\Leftrightarrow\dfrac{1}{x}-\dfrac{2}{\sqrt{xy}}+\dfrac{1}{y}+\dfrac{1}{y}-\dfrac{2}{\sqrt{yz}}+\dfrac{1}{z}+\dfrac{1}{z}-\dfrac{2}{\sqrt{zx}}+\dfrac{1}{x}\ge0\)

\(\Leftrightarrow\left(\dfrac{1}{\sqrt{x}}-\dfrac{1}{\sqrt{y}}\right)^2+\left(\dfrac{1}{\sqrt{y}}-\dfrac{1}{\sqrt{z}}\right) ^2+\left(\dfrac{1}{\sqrt{z}}-\dfrac{1}{\sqrt{x}}\right)^2\ge0\forall x;y;z>0\)

\(\Rightarrow\left(đpcm\right)\)

Đào Thị Huyền
25 tháng 8 2018 lúc 19:22

áp dụng BĐT côsi ta có

\(\dfrac{1}{x}+\dfrac{1}{y}\ge2\sqrt{\dfrac{1}{xy}}=\dfrac{2}{\sqrt{xy}}\)

\(\dfrac{1}{y}+\dfrac{1}{z}\ge2\sqrt{\dfrac{1}{yz}}=\dfrac{2}{\sqrt{yz}}\)

\(\dfrac{1}{z}+\dfrac{1}{x}\ge\dfrac{2}{\sqrt{xz}}\)

=> \(2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge2\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\)

=> đpcm

Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 2 2021 lúc 16:52

\(\left(1+x\right)^2=\left(1.1+\sqrt{xy}.\sqrt{\dfrac{x}{y}}\right)^2\le\left(1+xy\right)\left(1+\dfrac{x}{y}\right)=\dfrac{\left(1+xy\right)\left(x+y\right)}{y}\)

\(\Rightarrow\dfrac{1}{\left(1+x\right)^2}\ge\dfrac{y}{\left(1+xy\right)\left(x+y\right)}\)

Tương tự ta có: \(\dfrac{1}{\left(1+y\right)^2}\ge\dfrac{x}{\left(1+xy\right)\left(x+y\right)}\)

Cộng vế với vế: 

\(\dfrac{1}{\left(1+x\right)^2}+\dfrac{1}{\left(1+y\right)^2}\ge\dfrac{x+y}{\left(1+xy\right)\left(x+y\right)}=\dfrac{1}{1+xy}\)

Dấu "=" xảy ra khi \(x=y=1\)

Văn Quyết
Xem chi tiết
Phan Cả Phát
Xem chi tiết
Akai Haruma
24 tháng 5 2018 lúc 18:00

Lời giải:

Ta có: \(xy+yz+xz=3xyz\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)

Mà theo BĐT Cauchy-Schwarz: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}\)

Do đó: \(3\geq \frac{9}{x+y+z}\Rightarrow x+y+z\geq 3\)

-------

Ta có: \(\text{VT}=x-\frac{xz}{x^2+z}+y-\frac{xy}{y^2+x}+z-\frac{yz}{z^2+y}\)

\(=(x+y+z)-\left(\frac{xy}{y^2+x}+\frac{yz}{z^2+y}+\frac{xz}{x^2+z}\right)\)

\(\geq x+y+z-\frac{1}{2}\left(\frac{xy}{\sqrt{xy^2}}+\frac{yz}{\sqrt{z^2y}}+\frac{xz}{\sqrt{x^2z}}\right)\) (AM-GM)

\(=x+y+z-\frac{1}{2}(\sqrt{x}+\sqrt{y}+\sqrt{z})\)

Tiếp tục AM-GM: \(\sqrt{x}+\sqrt{y}+\sqrt{z}\leq \frac{x+1}{2}+\frac{y+1}{2}+\frac{z+1}{2}=\frac{x+y+z+3}{2}\)

Suy ra:

\(\text{VT}\geq x+y+z-\frac{1}{2}.\frac{x+y+z+3}{2}=\frac{3}{4}(x+y+z)-\frac{3}{4}\)

\(\geq \frac{9}{4}-\frac{3}{4}=\frac{3}{2}=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Ta có đpcm

Dấu bằng xảy ra khi $x=y=z=1$

Đỗ Linh Chi
Xem chi tiết
Akai Haruma
16 tháng 3 2018 lúc 10:31

Lời giải:

Phải thêm điều kiện \(x,y,z>0\) nữa em nhé. Nếu không bài toán sai ngay với \(x=y=z=-1\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\text{VT}=\frac{x^4}{y+3z}+\frac{y^4}{z+3x}+\frac{z^4}{x+3y}=\frac{(x^2)^2}{y+3z}+\frac{(y^2)^2}{z+3x}+\frac{(z^2)^2}{x+3y}\)

\(\geq \frac{(x^2+y^2+z^2)^2}{y+3z+z+3x+x+3y}=\frac{(x^2+y^2+z^2)^2}{4(x+y+z)}(1)\)

Áp dụng BĐT Bunhiacopxky: \((x^2+y^2+z^2)(1+1+1)\geq (x+y+z)^2\)

\(\Rightarrow \sqrt{3(x^2+y^2+z^2)}\geq x+y+z(2)\)

Từ \((1); (2)\Rightarrow \text{VT}\geq \frac{(x^2+y^2+z^2)^2}{4\sqrt{3(x^2+y^2+z^2)}}=\frac{\sqrt{(x^2+y^2+z^2)^3}}{4\sqrt{3}}\)

Theo hệ quả của BĐT AM-GM \(x^2+y^2+z^2\geq xy+yz+xz\geq 3\)

Suy ra \(\text{VT}\geq \frac{\sqrt{3^3}}{4\sqrt{3}}=\frac{3}{4}\) (đpcm)

Dấu bằng xảy ra khi \(x=y=z=1\)

Hà Thảo
Xem chi tiết
Neet
29 tháng 12 2017 lúc 20:34

Dự đoán điểm rơi: x=3 ; y =4;z =2

ÁP dụng AM-Gm ta có:

\(\dfrac{8}{xyz}+\dfrac{x}{9}+\dfrac{y}{12}+\dfrac{z}{6}\ge4\sqrt[4]{\dfrac{8}{9.12.6}}=\dfrac{4}{3}\)

\(\dfrac{2}{xy}+\dfrac{x}{18}+\dfrac{y}{24}\ge3\sqrt[3]{\dfrac{2}{18.24}}=\dfrac{1}{2}\)

\(\dfrac{2}{yz}+\dfrac{y}{16}+\dfrac{z}{8}\ge3\sqrt[3]{\dfrac{2}{16.8}}=\dfrac{3}{4}\)

\(\dfrac{2}{xz}+\dfrac{z}{6}+\dfrac{x}{9}\ge3\sqrt[3]{\dfrac{2}{6.9}}=1\)

\(\dfrac{13}{18}x+\dfrac{13}{24}y\ge2\sqrt{\dfrac{169}{18.24}xy}\ge\dfrac{13}{3}\)

\(\dfrac{13}{24}z+\dfrac{13}{48}y\ge2\sqrt{\dfrac{169}{24.48}.yz}\ge\dfrac{13}{6}\)

Cộng tất cả theo vế ,ta thu được Đpcm.