trên đường thẳng y = x + 1 , tìm những điểm có tọa độ thỏa mãn : \(y^2-3y\sqrt{x}+2x=0\)
Trên đường thẳng y=x+1 tìm những điểm có tọa độ thỏa mãn đẳng thức : \(y^2-3y\sqrt{x}+2x=0\)
trên đường thẳng y=x+1. Tìm những điểm có tọa độ thỏa mãn đẳng thức \(y^2-3y\sqrt{x}+2x=\)0
m,n giúp mk vs nha,. mk cần gấp lắm,,, thanks m.n trc nha
coi như giải hệ pt
\(\hept{\begin{cases}y=x+1\left(1\right)\\y^2-3y\sqrt{x}+2x=0\left(2\right)\end{cases}}\)
\(\left(2\right)\Leftrightarrow\left(y^2-3\sqrt{x}.y+\frac{9x}{4}\right)=\frac{9x}{4}-2x=\frac{x}{2}\\ \)
\(\left(y-\frac{3\sqrt{x}}{2}\right)^2=\left(\frac{\sqrt{x}}{2}\right)^2\Rightarrow\orbr{\begin{cases}y=\frac{3\sqrt{x}}{2}-\frac{\sqrt{x}}{2}=\sqrt{x}\\y=\frac{3\sqrt{x}}{2}+\frac{\sqrt{x}}{2}=2\sqrt{x}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=x+1\left(3\right)\\2\sqrt{x}=x+1\left(4\right)\end{cases}}\)
\(\left(3\right)\Leftrightarrow\orbr{\begin{cases}\left(\sqrt{x}-\frac{1}{2}\right)^2=\frac{1}{4}-1\left(vonghiem\right)\\\left(\sqrt{x}-1\right)^2=0\Rightarrow\sqrt{x}=1\Rightarrow x=1\end{cases}}\)
Vậy chỉ có điểm x=1; y=2 thỏa mãn
Trên đường thẳng y=x+1 .Tìm những điểm có thỏa độ thỏa mãn đẳng thức
\(y^2-3y\sqrt{x}+2x=0\)
Gọi A(x0;y0) là điểm thuộc đồ thị y = x + 1 thỏa mãn đẳng thức
⇒ y0= x0+1⇒ x0=y0-1
Vì A thỏa mãn đẳng thức nên
y02 - \(3y_0\sqrt{x_0}\)+2x0 =0
⇒ y02 -3y0\(\sqrt{y_0-1}+2\left(y_0-1\right)\)=0
mk ms làm đến đây thôi mong bn thông cảm
Cho các đường thẳng (d): y = 2x + 5m - 1 và đường thẳng (t): y = 4 - 3x. Tìm m để hai đường thẳng cắt nhau tại điểm A(x; y) có tọa độ thỏa mãn: x - 2y < 6
Tọa độ giao điểm là:
2x+5m-1=4-3x và y=4-3x
=>5x=4+1-5m và y=-3x+4
=>x=-m+1 và y=-3*(-m+1)+4=3m-3+4=3m+1
x-2y<6
=>-m+1-6m-3<6
=>-7m-2<6
=>-7m<8
=>m>-8/7
Cho hai điểm A, B thỏa mãn hệ phương trình x A + y A − 1 = 0 x B + y B − 1 = 0 . Tìm m để đường thẳng AB cắt đường thẳng y = x + m tại điểm C có tọa độ thỏa mãn y C = x C 2
A. m = 2
B. m = 1
C. m = 0
D. m = 2 ± 5
Trong hệ trục Oxy ,cho hai đường thẳng a : x-y-4=0 và b: 2x-y-2=0. Tìm tọa độ điểm N thuộc đường thẳng b sao cho ON cắt đường thẳng a tại điểm M thỏa mãn OM.ON=8
N(a, 2a-2); M(b, b-4). giải hpt sau
\(\begin{cases}\\\overrightarrow{ON}=k.\overrightarrow{OM}\end{cases}OM^2.ON^2=64\)
dùng pp thế đc 1 phương trình bậc 4 theo 2 hoặc b
Trong mặt phẳng tọa độ Ãy cho parapol (P): y=\(x^2\) và đường thẳng (d): y=mx+1-m.
a) Xác định tọa độ giao điểm của (P) và (d) khi m=-1
b) Tìm m để (P) và (d) cắt nhau tại 2 điểm phân biệt có hoàng độ \(x_1\);\(x_2\) thỏa mãn \(\sqrt{x_1}+\sqrt{x_2}=3\)
a: Khi m=-1 thì (d): y=-x+1-(-1)=-x+2
PTHĐGĐ là:
x^2+x-2=0
=>(x+2)(x-1)=0
=>x=-2 hoặc x=1
=>y=4 hoặc y=1
b: PTHĐGĐ là:
x^2-mx+m-1=0
Δ=(-m)^2-4(m-1)
=m^2-4m+4=(m-2)^2>=0
Để (P) cắt (d) tại hai điểm pb thì m-2<>0
=>m<>2
\(\sqrt{x_1}+\sqrt{x_2}=3\)
=>x1+x2+2 căn x1x2=9
=>\(m+2\sqrt{m-1}=9\)
=>\(m-1+2\sqrt{m-1}=8\)
=>\(\left(\sqrt{m-1}+4\right)\left(\sqrt{m-1}-2\right)=0\)
=>m=5
Trong mặt phẳng tọa độ Oxy,cho Parabol (P):y=x^2 và đường thẳng (d): y=2x-m+1 (m là tham số)
a) Tìm tọa độ giao điểm của (d) và (P) khi m=2
b) Tìm M để đường thẳng (d) cắt Parabol (P) tại hai điểm phân biệt có tung độ là y1,y2 thỏa mãn
b: Thay m=2 vào (d), ta được:
y=2x-2+1=2x-1
Phương trình hoành độ giao điểm là:
\(x^2=2x-1\)
=>\(x^2-2x+1=0\)
=>(x-1)^2=0
=>x-1=0
=>x=1
Thay x=1 vào (P), ta được:
\(y=1^2=1\)
Vậy: Khi m=2 thì (P) cắt (d) tại A(1;1)
b: Phương trình hoành độ giao điểm là:
\(x^2=2x-m+1\)
=>\(x^2-2x+m-1=0\)
\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot\left(m-1\right)\)
=4-4m+4
=-4m+8
Để (P) cắt (d) tại hai điểm phân biệt thì Δ>0
=>-4m+8>0
=>-4m>-8
=>m<2
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\\x_1x_2=\dfrac{c}{a}=m-1\end{matrix}\right.\)
y1,y2 thỏa mãn gì vậy bạn?
ta có
\(x^2+y^2-2x+4y=0\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=5\)
Vậy tập hợp các điểm thỏa mãn phương trình trên là đường tròn tâm I( 1,-2) bán kính \(\sqrt{5}\)