P=(6x^3-2x^2+3x-1)/(9x^2-6x+1)
a) tìm điều kiệ xđịnh để gt củaP đc xđịnh
b) rút gọn bthức
c) tìm gt x để P=-1
Cho B = [ 3x/( 1-3x ) + 2x/(3x+1) ] : 6x^2 + 10x/1-6x + 9x^2
a,Rút gọn B
b, Tính gtrị của B khi B = 1/3
c, tìm x để B > 0
a) Điều kiện : \(x\ne\pm\dfrac{1}{3}\)
\(B=\left[\dfrac{3x}{1-3x}+\dfrac{2x}{3x+1}\right]:\dfrac{6x^2+10x}{1-6x+9x^2}\)
\(=\left(\dfrac{3x\left(3x+1\right)}{\left(1-3x\right)\left(3x+1\right)}+\dfrac{2x\left(1-3x\right)}{\left(1-3x\right)\left(3x+1\right)}\right):\dfrac{6x^2+10x}{ \left(3x-1\right)^2}\)
\(=\dfrac{9x^2+3x+2x-6x^2}{\left(1-3x\right)\left(3x+1\right)}\cdot\dfrac{\left(1-3x\right)^2}{6x^2+10x}\)
\(=\dfrac{x\left(3x+5\right)}{\left(1-3x\right)\left(3x+1\right)}\cdot\dfrac{\left(1-3x\right)^2}{2x\left(3x+5\right)}=\dfrac{1-3x}{2\left(3x+1\right)}\)
b) Sai đề = Không làm
c) B >0
=> \(\left[{}\begin{matrix}\left\{{}\begin{matrix}1-3x>0\\2\left(3x+1\right)>0\end{matrix}\right.\\\left[{}\begin{matrix}1-3x< 0\\2\left(3x+1\right)< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{1}{3}\\x>-\dfrac{1}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x>\dfrac{1}{3}\\x< -\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\)
TH1 => \(-\dfrac{1}{3}< x< \dfrac{1}{3}\)
TH2 :Vô lí
Vậy giá trị x thỏa mãn :
\(-\dfrac{1}{3}< x< \dfrac{1}{3}\)
Cho B = \(\sqrt{1-6x+9x^2}-3x\)
a) Rút gọn B
b) Tính giá trị của B khi x = -0,5 ; 0 ; 0,5
c) Tìm x để B > 2
a) Ta có:
\(B=\sqrt{1-6x+9x^2}-3x\)
\(B=\sqrt{\left(1-3x\right)^2}-3x\)
\(B=\left|1-3x\right|-3x\)
Nếu \(x>\frac{1}{3}\) thì \(B=3x-1-3x=-1\)
Nếu \(x\le\frac{1}{3}\) thì \(B=1-3x-3x=1-6x\)
b) Xét ta thấy x = 0,5 > 1/3 nên khi đó: B = -1
Nếu x = 0: \(B=1-6\cdot0=1\)
Nếu x = -0,5: \(B=1-6\cdot\left(-0,5\right)=4\)
c) Ta có: \(B>2\)
\(\Leftrightarrow1-6x>2\)
\(\Leftrightarrow-1>6x\)
\(\Rightarrow x< -\frac{1}{6}\)
a) \(B=\sqrt{1-6x+9x^2}-3x\)
\(=\sqrt{\left(1-3x\right)^2}-3x\)
\(=\left|1-3x\right|-3x\)
Với x ≤ 1/3 => B = 1 - 3x - 3x = 1 - 6x
Với x > 1/3 => B = 3x - 1 - 3x = -1
b) Với x = -0, 5 < 1/3 => B = 1 - 6.(-0,5) = 4
Với x = 0 < 1/3 => B = 1 - 6.0 = 1
Với x = 0, 5 > 1/3 => B = -1
c) Để B > 2
=> | 1 - 3x | - 3x > 2 (*)
Với x ≤ 1/3
(*) ⇔ 1 - 3x - 3x > 2
⇔ -6x > 1
⇔ x < -1/6 ( tm )
Với x > 1/3
(*) ⇔ 3x - 1 - 3x > 2
⇔ -1 > 2 ( vô lí )
Vậy x < -1/6
Cho biểu thức \(P=\left(\frac{x^2+3x}{x^3+3x^2+9x+27}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)
a) Rút gọn P
b) Với x> 0 thì P không nhận những giá trị nào
c) Tìm x nguyên để P nguyên
\(\left(\frac{x^2+3x}{x^3+3x^2+9x+27}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)
\(=\left(\frac{x\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right)\)
\(=\left(\frac{x}{x^2+9}+\frac{3}{x^2+9}\right):\left(\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\right)=\frac{x+3}{x^2+9}:\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\)
\(=\frac{\left(x+3\right)\left(x-3\right)\left(x^2+9\right)}{\left(x^2+9\right)\left(x^2-6x+9\right)}=\frac{\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x-3\right)}=\frac{x+3}{x-3}\)
b) \(Voix>0\Rightarrow P\ne\varnothing\)(mk ko chac)
c) \(P\inℤ\Leftrightarrow x+3⋮x-3\Leftrightarrow x-3\in\left\{-1;-2;-3;-6;1;2;3;6\right\}\)
sau do tinh
cau nay la toan lp 8 nha
\(A=\left(\frac{2+4x}{8+4x}-\frac{x}{3x-6}+\frac{2x^3}{12x-3x^3}\right)\div\frac{6x+13x^2}{24x-12x^2}\)
a) Tìm TXĐ và Rút gọn A
b) Tìm x để \(A>0,A>-1\)
Tính GTBT \(P=\frac{x^4-x^3-2x-4}{2x^4+3x^3+2x^2-6x-4}\)
Với \(x\ne2;x\ne\frac{1}{2}\)
a. Rút gọn P
b. Tìm x để P = 2021
c. Tìm x để P > 0
Helpppp!
a. Ta có :
\(x^4-x^3-2x-4\)
\(=x^4-2x^3+x^3-2x-4\)
\(=x^3\left(x-2\right)+\left(x^3-2x^2\right)+\left(x^2-4\right)+\left(x^2-2x\right)\)
\(=x^3\left(x-2\right)+x^2\left(x-2\right)+\left(x+2\right)\left(x-2\right)+x\left(x-2\right)\)
\(=\left(x-2\right)\left(x^3+x^2+x+2+x\right)\)
\(=\left(x-2\right)\left[\left(x^3+2x\right)+\left(x^2+2\right)\right]\)
\(=\left(x-2\right)\left[x\left(x^2+2\right)+\left(x^2+2\right)\right]\)
\(=\left(x-2\right)\left(x^2+2\right)\left(x+1\right)\)
Ta lại có :
\(2x^4-3x^3+2x^2-6x-4\) ... biến đổi tương tự ta được \(\left(x^2+2\right)\left(x-2\right)\left(2x+1\right)\)
Do đó với \(x\ne2;x\ne\frac{1}{2}\) thì \(P=\frac{\left(x^2+2\right)\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x^2+2\right)\left(2x+1\right)}=\frac{x+1}{2x+1}\) ( = 1/2 )
Cảm ơn Let Hate Him nha! Nhưng bạn có thể biến đổi nốt phần sau giúp mình được không?
cho biểu thức P =\(\frac{x^2+2}{x^2+2x-3}:\left(\frac{x+3}{3x-3}-\frac{x+1}{2x+6}+\frac{x^2-27}{6x^2+12x-18.}\right)\)
tìm điều kiện để P đc xác định
rút gọn biểu thức
tìm các giá trị x để P có giá trị âm
cho biểu thức
P=(\(\dfrac{\text{x^3+3x}}{\text{x^3+3x^2+9x+27}}\)+\(\dfrac{\text{3}}{\text{x^2+9}}\)):(\(\dfrac{\text{1}}{\text{x-3}}\)-\(\dfrac{\text{6x}}{\text{x^3-3x^2+9x-27}}\))
rút gọn p
với x>0 thì P không nhận gt nào
Tìm cácgt của x để P nguyên
ĐKXĐ: \(x\ne\pm3\)
\(P=\left[\dfrac{x\left(x+3\right)}{x^2\left(x+3\right)+9\left(x+3\right)}+\dfrac{3}{x^2+9}\right]:\left[\dfrac{1}{x-3}-\dfrac{6x}{x^2\left(x-3\right)+9\left(x-3\right)}\right]\)
\(=\left[\dfrac{x\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}+\dfrac{3}{x^2+9}\right]:\left[\dfrac{1}{x-3}-\dfrac{6x}{\left(x-3\right)\left(x^2+9\right)}\right]\)
\(=\dfrac{x+3}{x^2+9}:\dfrac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}=\dfrac{x+3}{x^2+9}.\dfrac{\left(x-3\right)\left(x^2+9\right)}{\left(x-3\right)^2}=\dfrac{x+3}{x-3}\)
Ý 2 mình k hiểu ý bạn lắm
\(P=\dfrac{x+3}{x-3}=\dfrac{x-3+6}{x-3}=1+\dfrac{6}{x-3}\in Z\)
\(\Leftrightarrow\left(x-3\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Kết hợp vs ĐKXĐ \(\Rightarrow x\in\left\{0;1;2;4;5;6;9\right\}\)
cho P= ( x2+3x / x3+32+9x+27 + 3 / x2+9 ) : ( 1 / x-3 - 6x/x3-3x2+9x-27 )
a) rút gọn P
b)với x>0 thì P ko nhận nhũng giá trị nào
c)tìm các giá trị nguyên của x để P có giá trị nguyên
2)Q=1 + x+3 / x2+5x+6 : ( 8x2 / 4x3-8x2 - 3x / 3x2-12 - 1 / x+2 )
a) rút gọn Q
b) tìm các giá trị của x để Q=0;Q=1
c) tìm các giá trị của x để Q>0
Cho biểu thức:
P = \(\left(\dfrac{x+1}{3x^2+3x}+\dfrac{1-2x}{6x^2-3x}-1\right)\): \(\dfrac{1-x}{2x}\)
a) Rút gọn P
b) Tìm x ∈ Z đề P có giá trị nguyên
c) Tìm x để P ≤ 1
\(a,P=\left[\dfrac{x+1}{3x\left(x+1\right)}-\dfrac{2x-1}{3x\left(2x-1\right)}-1\right]\cdot\dfrac{2x}{1-x}\left(x\ne1;x\ne-1;x\ne0\right)\\ P=\left(\dfrac{1}{3x}-\dfrac{1}{3x}-1\right)\cdot\dfrac{2x}{1-x}\\ P=-1\cdot\dfrac{2x}{1-x}=\dfrac{2x}{x-1}\\ b,P=2+\dfrac{2}{x-1}\in Z\\ \Leftrightarrow x-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Leftrightarrow x\in\left\{2;3\right\}\left(x\ne-1;x\ne0\right)\\ c,P\le1\Leftrightarrow\dfrac{2x}{x-1}-1\le0\\ \Leftrightarrow\dfrac{x+1}{x-1}\le0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1\le0\\x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1\ge0\\x-1< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow-1\le x< 1\)
a: \(P=\left(\dfrac{x+1}{3x\left(x+1\right)}-\dfrac{2x-1}{3x\left(2x-1\right)}-1\right)\cdot\dfrac{2x}{x-1}\)
\(=\dfrac{1-1-3x}{3x}\cdot\dfrac{2x}{x-1}\)
\(=\dfrac{-3x}{3x}\cdot\dfrac{2x}{x-1}=\dfrac{-2x}{x-1}\)