Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thùy Vũ
Xem chi tiết
Thùy Vũ
26 tháng 2 2019 lúc 15:33
https://i.imgur.com/xpomZlu.jpg
Lê Anh Duy
26 tháng 2 2019 lúc 15:49

a) Điều kiện : \(x\ne\pm\dfrac{1}{3}\)
\(B=\left[\dfrac{3x}{1-3x}+\dfrac{2x}{3x+1}\right]:\dfrac{6x^2+10x}{1-6x+9x^2}\)

\(=\left(\dfrac{3x\left(3x+1\right)}{\left(1-3x\right)\left(3x+1\right)}+\dfrac{2x\left(1-3x\right)}{\left(1-3x\right)\left(3x+1\right)}\right):\dfrac{6x^2+10x}{ \left(3x-1\right)^2}\)

\(=\dfrac{9x^2+3x+2x-6x^2}{\left(1-3x\right)\left(3x+1\right)}\cdot\dfrac{\left(1-3x\right)^2}{6x^2+10x}\)

\(=\dfrac{x\left(3x+5\right)}{\left(1-3x\right)\left(3x+1\right)}\cdot\dfrac{\left(1-3x\right)^2}{2x\left(3x+5\right)}=\dfrac{1-3x}{2\left(3x+1\right)}\)

b) Sai đề = Không làm

c) B >0

=> \(\left[{}\begin{matrix}\left\{{}\begin{matrix}1-3x>0\\2\left(3x+1\right)>0\end{matrix}\right.\\\left[{}\begin{matrix}1-3x< 0\\2\left(3x+1\right)< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{1}{3}\\x>-\dfrac{1}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x>\dfrac{1}{3}\\x< -\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\)

TH1 => \(-\dfrac{1}{3}< x< \dfrac{1}{3}\)

TH2 :Vô lí

Vậy giá trị x thỏa mãn :

\(-\dfrac{1}{3}< x< \dfrac{1}{3}\)

ChloeVera
Xem chi tiết
Nguyễn Minh Đăng
25 tháng 10 2020 lúc 18:07

a) Ta có:

\(B=\sqrt{1-6x+9x^2}-3x\)

\(B=\sqrt{\left(1-3x\right)^2}-3x\)

\(B=\left|1-3x\right|-3x\)

Nếu \(x>\frac{1}{3}\) thì \(B=3x-1-3x=-1\)

Nếu \(x\le\frac{1}{3}\) thì \(B=1-3x-3x=1-6x\)

b) Xét ta thấy x = 0,5 > 1/3 nên khi đó: B = -1

Nếu x = 0: \(B=1-6\cdot0=1\)

Nếu x = -0,5: \(B=1-6\cdot\left(-0,5\right)=4\)

c) Ta có: \(B>2\)

\(\Leftrightarrow1-6x>2\)

\(\Leftrightarrow-1>6x\)

\(\Rightarrow x< -\frac{1}{6}\)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
25 tháng 10 2020 lúc 18:07

a) \(B=\sqrt{1-6x+9x^2}-3x\)

\(=\sqrt{\left(1-3x\right)^2}-3x\)

\(=\left|1-3x\right|-3x\)

Với x ≤ 1/3 => B = 1 - 3x - 3x = 1 - 6x

Với x > 1/3 => B = 3x - 1 - 3x = -1

b) Với x = -0, 5 < 1/3 => B = 1 - 6.(-0,5) = 4

Với x = 0 < 1/3 => B = 1 - 6.0 = 1

Với x = 0, 5 > 1/3 => B = -1

c) Để B > 2

=> | 1 - 3x | - 3x > 2 (*)

Với x ≤ 1/3 

(*) ⇔ 1 - 3x - 3x > 2

     ⇔ -6x > 1

     ⇔ x < -1/6 ( tm )

Với x > 1/3

(*) ⇔ 3x - 1 - 3x > 2

     ⇔ -1 > 2 ( vô lí )

Vậy x < -1/6

  

Khách vãng lai đã xóa
Minh Nguyễn
Xem chi tiết
shitbo
20 tháng 12 2018 lúc 17:37

\(\left(\frac{x^2+3x}{x^3+3x^2+9x+27}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)

\(=\left(\frac{x\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right)\)

\(=\left(\frac{x}{x^2+9}+\frac{3}{x^2+9}\right):\left(\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\right)=\frac{x+3}{x^2+9}:\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\)

\(=\frac{\left(x+3\right)\left(x-3\right)\left(x^2+9\right)}{\left(x^2+9\right)\left(x^2-6x+9\right)}=\frac{\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x-3\right)}=\frac{x+3}{x-3}\)

b) \(Voix>0\Rightarrow P\ne\varnothing\)(mk ko chac)

c) \(P\inℤ\Leftrightarrow x+3⋮x-3\Leftrightarrow x-3\in\left\{-1;-2;-3;-6;1;2;3;6\right\}\) 

sau do tinh

cau nay la toan lp 8 nha

shitbo
20 tháng 12 2018 lúc 17:55

P= O/ nha

Duong Thi Nhuong
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 2 2022 lúc 14:10

undefined

CơnGióLạnh
Xem chi tiết
Khánh Ngọc
19 tháng 7 2020 lúc 23:23

a. Ta có :

\(x^4-x^3-2x-4\)

\(=x^4-2x^3+x^3-2x-4\)

\(=x^3\left(x-2\right)+\left(x^3-2x^2\right)+\left(x^2-4\right)+\left(x^2-2x\right)\)

\(=x^3\left(x-2\right)+x^2\left(x-2\right)+\left(x+2\right)\left(x-2\right)+x\left(x-2\right)\)

\(=\left(x-2\right)\left(x^3+x^2+x+2+x\right)\)

\(=\left(x-2\right)\left[\left(x^3+2x\right)+\left(x^2+2\right)\right]\)

\(=\left(x-2\right)\left[x\left(x^2+2\right)+\left(x^2+2\right)\right]\)

\(=\left(x-2\right)\left(x^2+2\right)\left(x+1\right)\)

Ta lại có :

\(2x^4-3x^3+2x^2-6x-4\) ... biến đổi tương tự ta được \(\left(x^2+2\right)\left(x-2\right)\left(2x+1\right)\) 

Do đó với  \(x\ne2;x\ne\frac{1}{2}\) thì \(P=\frac{\left(x^2+2\right)\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x^2+2\right)\left(2x+1\right)}=\frac{x+1}{2x+1}\) ( = 1/2 )

Khách vãng lai đã xóa
CơnGióLạnh
20 tháng 7 2020 lúc 10:26

Cảm ơn Let Hate Him nha! Nhưng bạn có thể biến đổi nốt phần sau giúp mình được không?

Khách vãng lai đã xóa
IS
Xem chi tiết
Tiến Hoàng Minh
Xem chi tiết
Lấp La Lấp Lánh
8 tháng 2 2022 lúc 20:43

ĐKXĐ: \(x\ne\pm3\)

\(P=\left[\dfrac{x\left(x+3\right)}{x^2\left(x+3\right)+9\left(x+3\right)}+\dfrac{3}{x^2+9}\right]:\left[\dfrac{1}{x-3}-\dfrac{6x}{x^2\left(x-3\right)+9\left(x-3\right)}\right]\)

\(=\left[\dfrac{x\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}+\dfrac{3}{x^2+9}\right]:\left[\dfrac{1}{x-3}-\dfrac{6x}{\left(x-3\right)\left(x^2+9\right)}\right]\)

\(=\dfrac{x+3}{x^2+9}:\dfrac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}=\dfrac{x+3}{x^2+9}.\dfrac{\left(x-3\right)\left(x^2+9\right)}{\left(x-3\right)^2}=\dfrac{x+3}{x-3}\)

Ý 2 mình k hiểu ý bạn lắm

\(P=\dfrac{x+3}{x-3}=\dfrac{x-3+6}{x-3}=1+\dfrac{6}{x-3}\in Z\)

\(\Leftrightarrow\left(x-3\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)

Kết hợp vs ĐKXĐ \(\Rightarrow x\in\left\{0;1;2;4;5;6;9\right\}\)

vudanhnang
Xem chi tiết
vudanhnang
6 tháng 3 2016 lúc 16:36

ai giup mink vs

Phương Anh Hoàng
Xem chi tiết
Nguyễn Hoàng Minh
7 tháng 11 2021 lúc 14:12

\(a,P=\left[\dfrac{x+1}{3x\left(x+1\right)}-\dfrac{2x-1}{3x\left(2x-1\right)}-1\right]\cdot\dfrac{2x}{1-x}\left(x\ne1;x\ne-1;x\ne0\right)\\ P=\left(\dfrac{1}{3x}-\dfrac{1}{3x}-1\right)\cdot\dfrac{2x}{1-x}\\ P=-1\cdot\dfrac{2x}{1-x}=\dfrac{2x}{x-1}\\ b,P=2+\dfrac{2}{x-1}\in Z\\ \Leftrightarrow x-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Leftrightarrow x\in\left\{2;3\right\}\left(x\ne-1;x\ne0\right)\\ c,P\le1\Leftrightarrow\dfrac{2x}{x-1}-1\le0\\ \Leftrightarrow\dfrac{x+1}{x-1}\le0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1\le0\\x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1\ge0\\x-1< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow-1\le x< 1\)

Nguyễn Lê Phước Thịnh
7 tháng 11 2021 lúc 14:08

a: \(P=\left(\dfrac{x+1}{3x\left(x+1\right)}-\dfrac{2x-1}{3x\left(2x-1\right)}-1\right)\cdot\dfrac{2x}{x-1}\)

\(=\dfrac{1-1-3x}{3x}\cdot\dfrac{2x}{x-1}\)

\(=\dfrac{-3x}{3x}\cdot\dfrac{2x}{x-1}=\dfrac{-2x}{x-1}\)