Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Vương Kim Anh
Xem chi tiết
Nữ hoàng sến súa là ta
Xem chi tiết
Huỳnh Quang Sang
24 tháng 11 2018 lúc 10:35

\(a)\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\frac{(x-3)^2(2x+5)}{(3x-1)(x-3)^2}(ĐK:x\ne3,x\ne\frac{1}{3})\)

                                                \(=\frac{2x+5}{3x-1}\)

Còn bài b bạn tự làm nhé

Pham Van Hung
24 tháng 11 2018 lúc 19:34

Điều kiện: \(x\ne\left\{-1;-2;-5\right\}\)

\(\frac{x^3+x^2-4x-4}{x^3+8x^2+17x+10}=\frac{x^2\left(x+1\right)-4\left(x+1\right)}{x^2\left(x+1\right)+7x\left(x+1\right)+10\left(x+1\right)}\)

\(=\frac{\left(x+1\right)\left(x^2-4\right)}{\left(x+1\right)\left(x^2+7x+10\right)}\)

\(=\frac{\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x+1\right)\left[x\left(x+2\right)+5\left(x+2\right)\right]}\)

\(=\frac{\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+5\right)}=\frac{x-2}{x+5}\)

Điều kiện: \(x\ne\left\{3;\frac{1}{3}\right\}\)

\(\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\frac{2x^3-6x^2-x^2+3x-15x+45}{3x^3-9x^2-10x^2+30x+3x-9}\)

\(=\frac{2x^2\left(x-3\right)-x\left(x-3\right)-15\left(x-3\right)}{3x^2\left(x-3\right)-10x\left(x-3\right)+3\left(x-3\right)}\)

\(=\frac{\left(x-3\right)\left(2x^2-x-15\right)}{\left(x-3\right)\left(3x^2-10x+3\right)}\)

\(=\frac{2x^2-x-15}{3x^2-10x+3}=\frac{2x\left(x-3\right)+5\left(x-3\right)}{3x\left(x-3\right)-\left(x-3\right)}\)

\(=\frac{\left(2x+5\right)\left(x-3\right)}{\left(3x-1\right)\left(x-3\right)}=\frac{2x+5}{3x-1}\)

Hỏi làm gì
Xem chi tiết
Đặng Nguyễn Khánh Uyên
Xem chi tiết
ngonhuminh
19 tháng 1 2017 lúc 21:05

f(0)=-4/10

a/b=-4/10=-2/5

f(1)=-6/26=-3/13=(a+1)/(b+1)

5a=-2b

a/-2=b/5=(a+b)/3

13a+13=-3b-3

15a=-6b

26a=-6b-6

11a=-6

a+b=-3/2.a=3/2.6/11=9/11

a+b=9/11

....
Xem chi tiết
Hoàng Thị Lan Hương
11 tháng 7 2017 lúc 9:46

\(\frac{x^3+x^2-4x-4}{x^3+8x^2+17x+10}=\frac{x^2\left(x+1\right)-4\left(x+1\right)}{x^2\left(x+1\right)+7x\left(x+1\right)+10\left(x+1\right)}\)

\(=\frac{\left(x+1\right)\left(x^2-4\right)}{\left(x+1\right)\left(x^2+7x+10\right)}=\frac{\left(x+2\right)\left(x-2\right)}{x\left(x+2\right)+5\left(x+2\right)}\)

\(=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x+5\right)}=\frac{x-2}{x+5}\Rightarrow a=-2;b=5\)

\(\Rightarrow\)\(a+b=-2+5=3\)

phan gia huy
Xem chi tiết
Lê Vương Kim Anh
Xem chi tiết
Kien Nguyen
9 tháng 11 2017 lúc 20:41

a) \(\dfrac{x^3+x^2-4x-4}{x^3+8x^2+17x+10}\)

= \(\dfrac{\left(x^3+x^2\right)-\left(4x+4\right)}{\left(x^3+x^2\right)+\left(7x^2+7x\right)+\left(10x+10\right)}\)

=\(\dfrac{x^2\left(x+1\right)-4\left(x+1\right)}{x^2\left(x+1\right)+7x\left(x+1\right)+10\left(x+1\right)}\)

= \(\dfrac{\left(x^2-4\right)\left(x+1\right)}{\left(x^2+7x+10\right)\left(x+1\right)}\)

= \(\dfrac{\left(x+2\right)\left(x-2\right)\left(x+1\right)}{\left[\left(x^2+2x\right)+\left(5x+10\right)\right]\left(x+1\right)}\)

= \(\dfrac{\left(x+2\right)\left(x-2\right)}{x\left(x+2\right)+5\left(x+2\right)}\)

= \(\dfrac{\left(x+2\right)\left(x-2\right)}{\left(x+5\right)\left(x+2\right)}\)

= \(\dfrac{x-2}{x+5}\)

b) \(\dfrac{x^3+3x^2-4}{x^3-3x+2}\)

= \(\dfrac{x^3-x^2+4x^2+4x-4x-4}{x^3-x-2x+2}\)

= \(\dfrac{\left(x^3-x^2\right)+\left(4x^2-4x\right)+\left(4x-4\right)}{\left(x^3-x\right)-\left(2x-2\right)}\)

= \(\dfrac{x^2\left(x-1\right)+4x\left(x-1\right)+4\left(x-1\right)}{x^2\left(x-1\right)-2\left(x-1\right)}\)

= \(\dfrac{\left(x^2+4x+4\right)\left(x-1\right)}{\left(x^2-2\right)\left(x-1\right)}\)

= \(\dfrac{\left(x+2\right)^2\left(x-1\right)}{\left(x^2-2\right)\left(x-1\right)}\)

= \(\dfrac{\left(x+2\right)^2}{x^2-2}\)

Nhớ tik nha...leuleuleuleuleuleu

Kien Nguyen
10 tháng 11 2017 lúc 12:48

Rút gọn phân thức

Kien Nguyen
9 tháng 11 2017 lúc 21:13

chữa lại câu b nhé:

b) \(\dfrac{x^3+3x^2-4}{x^3-3x+2}\)

= \(\dfrac{x^3-x^2+4x^2+4x-4x-4}{x^3-x-2x+2}\)

=\(\dfrac{\left(x^3-x^2\right)+\left(4x^2-4x\right)+\left(4x-4\right)}{\left(x^3-x\right)-\left(2x-2\right)}\)

= \(\dfrac{x^2\left(x-1\right)+4x\left(x-1\right)+4\left(x-1\right)}{x\left(x^2-1\right)-2\left(x-1\right)}\)

= \(\dfrac{\left(x^2+4x+4\right)\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)-2\left(x-1\right)}\)

= \(\dfrac{\left(x+2\right)^2\left(x-1\right)}{\left(x-1\right)\left[x\left(x+1\right)-2\right]}\)

= \(\dfrac{\left(x+2\right)^2}{x^2+x-2}\)

Đúng chưa bn...

Linh
Xem chi tiết
Hàn Vũ
23 tháng 11 2017 lúc 20:33

a)

\(\dfrac{x^3+x^2-4x-4}{x^3+8x^2+17x+10}\)

\(=\dfrac{x^2\left(x+1\right)-4\left(x+1\right)}{x^3+2x^2+6x^2+12x+5x+10}\)

\(=\dfrac{\left(x+1\right)\left(x^2-4\right)}{x^2\left(x+2\right)+6x\left(x+2\right)+5\left(x+2\right)}\)

\(=\dfrac{\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x^2+6x+5\right)}\)

\(=\dfrac{\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left[x\left(x+5\right)+\left(x+5\right)\right]}\)

\(=\dfrac{\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x+5\right)\left(x+1\right)}\)

\(=\dfrac{x-2}{x+5}\)

b)

\(\dfrac{x^4+6x^3+9x^2-1}{x^4+6x^3+7x^2-6x+1}\)

\(=\dfrac{x^4+3x^3+x^2+3x^3+9x^2+3x-x^2-3x-1}{x^4+3x^3-x^2+3x^3+9x^2-3x-x^2-3x+1}\)

\(=\dfrac{x^2\left(x^2+3x+1\right)+3x\left(x^2+3x+1\right)-\left(x^2+3x+1\right)}{x^2\left(x^2+3x-1\right)+3x\left(x^2+3x-1\right)-\left(x^2+3x-1\right)}\)

\(=\dfrac{\left(x^2+3x+1\right)\left(x^2+3x-1\right)}{\left(x^2+3x-1\right)\left(x^2+3x-1\right)}\)

\(=\dfrac{x^2+3x+1}{x^2+3x-1}\)

Đặng Nguyễn Khánh Uyên
Xem chi tiết
Pé Jin
11 tháng 2 2017 lúc 20:58

Phân tích phương trình:

\(\frac{x^3+x^2-4\cdot x-4}{x^3+8\cdot x^2+17\cdot x+10}=\frac{x^2\cdot\left(x+1\right)-4\cdot\left(x+1\right)}{x^2\cdot\left(x+1\right)+7\cdot x\cdot\left(x+1\right)+10\cdot\left(x+1\right)}\)

\(=\frac{\left(x+1\right)\cdot\left(x^2-4\right)}{\left(x+1\right)\cdot\left(x^2+7\cdot x+10\right)}\)

\(=\frac{\left(x+1\right)\cdot\left(x+2\right)\cdot\left(x-2\right)}{\left(x+1\right)\cdot\left(x+2\right)\cdot\left(x+5\right)}=\frac{x-2}{x+5}\)

Vậy \(a=-2;b=5\)