Những câu hỏi liên quan
Trần Ngọc Tú
Xem chi tiết
Namikaze Minato
24 tháng 11 2018 lúc 23:21

Bạn có thể sử dụng BĐT thức Cô-si và xét trường hợp dấu bằng xảy ra nhé bạn !

Bình luận (0)
Nguyễn Linh Chi
5 tháng 4 2020 lúc 21:21

Câu hỏi của Trần Ngọc Tú - Toán lớp 8 - Học toán với OnlineMath

Bình luận (0)
 Khách vãng lai đã xóa
One Two Three
Xem chi tiết
Trần Ngọc Tú
Xem chi tiết
Nguyễn Linh Chi
24 tháng 11 2018 lúc 22:51

Ta có

\(x+y+z+\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{y+x}=x+y+z\)

=> \(x+\frac{x^2}{y+z}+y+\frac{y^2}{z+x}+z+\frac{z^2}{y+x}=x+y+z\)

=> \(\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{z+x}+\frac{z\left(x+y+z\right)}{y+x}=x+y+z\)

=> \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}=1\)

Bình luận (0)
tiểu khải love in love
Xem chi tiết
Nguyễn Khánh Ly
1 tháng 11 2020 lúc 19:43
Với xyz \(\ne\) 0 ta có:

x + y + z = 0 \(\Leftrightarrow\)\(\hept{\begin{cases}y+z=-x\\x+y=-z\\x+z=-y\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}(y+z)^2=(-x)^2\\(x+y)^2=(-z)^2\\(x+z)^2=(-y)^2\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y^2+2yz+z^2=x^2\\x^2+2xy+y^2=z^2\\x^2+2xz+z^2=y^2\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y^2+z^2-x^2=-2yz\\x^2+y^2-z^2=-2xy\\x^2+z^2-y^2=-2xz\end{cases}}\)

Thay vào P ta được:

P=\(\frac{1}{-2yz}\)\(+\)\(\frac{1}{-2xy}\)\(+\)\(\frac{1}{-2xz}\)\(=\)\(\frac{-x}{2xyz}\)\(+\)\(\frac{-z}{2xyz}\)\(+\)\(\frac{-y}{2xyz}\)\(=\)\(\frac{-(x+y+z)}{2xyz}\)\(=\)\((x+y+z=0)\)

Vậy với \(x+y+z=0\)và \(xyz\ne0\)thì \(P=0\)

Bình luận (0)
 Khách vãng lai đã xóa
Bùi Đức Anh
Xem chi tiết
Trần Thanh Hải
Xem chi tiết
tth_new
17 tháng 1 2019 lúc 9:54

Đặt \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)

Theo giả thiết,ta có: \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{cd}=\frac{3}{abc}\)

Nhân hai vế với abc: \(a+b+c=3\) tức là \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)

Lại có:\(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{xyz}\)

Ta cần c/m: \(A\ge\frac{3}{2}\)

Do x,y,z > 0 áp dụng BĐT Cô si: \(x^3+y^3+z^3\ge3xyz=xy+yz+zx\)

Áp dụng BĐT Cô si: \(A\ge3\sqrt[3]{\frac{x^3y^3z^3}{\left(z+x^2\right)\left(x+y^2\right)\left(y+z^2\right)}}\)

\(=3xyz.\frac{1}{\sqrt[3]{\left(z+x^2\right)\left(x+y^2\right)\left(y+z^2\right)}}\)\(\ge3xyz.\frac{xy+yz+zx}{\left(x+y+z\right)+\left(x^2+y^2+z^2\right)}\)

\(=\frac{3\left(x^2y^2z+xy^2z^2+x^2yz^2\right)}{\left(x+y+z\right)+\left(x^2+y^2+z^2\right)}\ge\frac{3x^2y^2z^2}{\left(x+y+z\right)+\left(x^2+y^2+z^2\right)}\)

\(=\frac{3x^2y^2z^2}{\left(x+y+z\right)+\left(x+y+z\right)^2-2\left(xy+yz+zx\right)}\)

\(=\frac{3x^2y^2z^2}{\left(x+y+z\right)\left(x+y+z+1\right)-6xyz}\)

\(=\frac{3x^2y^2z^2}{xyz\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left[xyz\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+1\right]-6xyz}\)

\(=\frac{3x^2y^2z^2}{3xyz\left[3xyz+1\right]-6xyz}=\frac{3x^2y^2z^2}{9x^2y^2z^2-3xyz}\)

Đặt \(B=\frac{1}{A}=\frac{9x^2y^2z^2-3xyz}{3x^2y^2z^2}\)

Ta sẽ c/m: \(B\ge\frac{2}{3}\).Thật vậy,ta có:

\(B=\frac{1}{A}=\frac{9x^2y^2z^2-3xyz}{3x^2y^2z^2}=3-\frac{3}{3xyz}\)\(=3-\frac{1}{xyz}\ge0\)

Suy ra \(A\ge0?!?\) có gì đó sai sai.Ai biết chỉ  giùm

Bình luận (0)
Incursion_03
18 tháng 1 2019 lúc 21:29

Nghĩ mãi mới ra -.- Để ý cái số mũ 3 trên tử khó mà dùng trực tiếp Cô-si hoặc  Bunhia nên phải tách nó ra

Ta có: \(\frac{x^3}{x^2+z}=\frac{x^3+xz}{x^2+z}-\frac{xz}{x^2+z}=x-\frac{xz}{x^2+z}\)

                                                                     \(\ge x-\frac{xz}{2x\sqrt{z}}\)(Cô-si)

                                                                       \(=x-\frac{\sqrt{z}}{2}\)

                                                                        \(\ge x-\frac{z+1}{4}\)(Dùng bđt \(\sqrt{z}\le\frac{z+1}{2}\))

 Tương tự \(\frac{y^3}{y^2+z}\ge y-\frac{x+1}{4}\)

               \(\frac{z^3}{z^2+y}\ge z-\frac{y+1}{4}\)

Cộng từng vế của các bđt trên lại được

\(A\ge x+y+z-\frac{x+y+z+3}{4}=\frac{3x+3y+3z-3}{4}\)

                                                                   \(=\frac{3\left(x+y+z\right)}{4}-\frac{3}{4}\)

Từ điều kiện \(xy+yz+zx=3xyz\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)

Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(a,b,c>0\right)\)được

\(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

\(\Rightarrow x+y+z\ge3\)

Quay trở lại với A

\(A\ge\frac{3\left(x+y+z\right)}{4}-\frac{3}{4}\ge\frac{3.3}{4}-\frac{3}{4}=\frac{3}{2}=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)(Do \(3=\frac{1}{x}+\frac{1}{y}=\frac{1}{z}\))

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y=z\\xy+yz+zx=3\end{cases}\Leftrightarrow x=y=z=1}\)

Vậy .............

Bình luận (0)
Incursion_03
17 tháng 1 2019 lúc 10:49

tth làm lạ vậy ? Lí giải hộ chỗ \(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{xyz}????\)

Bình luận (0)
Clary
Xem chi tiết
Ngọc Nguyễn
Xem chi tiết
Nyatmax
1 tháng 9 2019 lúc 13:16

Ta co:\(x+y+z=0\)

\(\Leftrightarrow\frac{x+y+z}{xyz}=0\)

\(\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=0\)

\(\Leftrightarrow2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=0\)

\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

\(\Leftrightarrow\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=|\frac{1}{x}+\frac{1}{y}+\frac{1}{z}|\)

Bình luận (0)
๖²⁴ʱƘ-ƔℌŤ༉
1 tháng 9 2019 lúc 14:14

\(x+y+z=0\)

\(\Leftrightarrow\frac{x+y+z}{xyz}=0\)(Vì \(x,y,z\ne0\))

\(\Leftrightarrow\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=0\)

\(\Leftrightarrow2\left(\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}\right)=0\)

Mà \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}\right)\)

nên \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

\(\Leftrightarrow\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=\left|\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right|\)(Áp dụng HĐT \(\sqrt{x^2}=\left|x\right|\))

Bình luận (0)
Mai Thanh Hoàng
Xem chi tiết