Tìm giá trị nhỏ nhất hoặc lớn nhât nhanhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
Tìm Giá trị lớn nhât hoặc nhỏ nhất cho biểu thức sau:
D=2x^2+y^2+6x+2y+2xy+2017
D=2x2+y2+6x+2y+2xy+2017
=x2+4x+4+x2+y2+1+2x+2y+2xy+2012
=(x+2)2+(x+y+1)2+2012\(\ge\)2012
Dấu = khi x=-2 và y=1
Vậy MinA=2012 khi x=-2 và y=1
tìm giá trị nhỏ nhât hoặc giá trị lớn nhất
A= x2+ 4
x2+4x+4
với x khác -2, x > 0
\(A=x^2+4\ge4\)
vậy giá trị nhỏ nhất của biểu thức là 4 khi x = 0
\(x^2+4x+4=\left(x+2\right)^2\)
Vì \(x\ne-2;x>0\)
nên biểu thức có giá trị nhỏ nhất là 9 khi x = 1
b) \(x^2+4x+4=\left(x+2\right)^2\)
Vì \(\left(x+2\right)^2\ge0;\forall x\)
Dấu "=" xảy ra\(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
Vậy MIN của biêu thức =0 \(\Leftrightarrow x=-2\)
Tìm tập giá trị lớn nhất, giá trị nhỏ nhât của hàm số sau: y = 1 + 3 sin 2 x - π 4
A. min y= -2, max y =4
B. min y =2, max y =4
C. min y = -2, max y = 3
D. min y= -1, max y= 4
Tìm giá trị lớn nhất là M và giá trị nhỏ nhât là m của hàm số y = x 4 − 2 x 2 + 3 trên đoạn 0 , 2 .
A. M = 3 ; m = 2
B. M = 5 ; m = 2
C. M = 11 ; m = 2
D. M = 11 ; m = 3
Đáp án C
Ta có: y ' = 4 x 3 − 4 x = 0 ⇔ 4 x x 2 − 1 = 0 ⇔ x = 0 x = ± 1
Mà y 0 = 3 ; y 1 = 2 ; y 2 = 11 ⇒ M = 11 , m = 2.
\(\frac{x^2+15}{x^2+3}\) tìm giá trị nhỏ nhât,lớn nhất
Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất của các biểu thức sau:
\(A=\left(x-4\right)^2+1\)
Ta có: \(\left(x-4\right)^2\ge0\Rightarrow\left(x-4\right)^2+1\ge1\Rightarrow A\ge1\)
\(A_{min}=1\Leftrightarrow x=4\)
\(B=\left|3x-2\right|-5\)
Ta có: \(\left|3x-2\right|\ge0\Rightarrow\left|3x-2\right|-5\ge-5\Rightarrow B\ge-5\)
\(B_{min}=-5\Leftrightarrow x=\dfrac{2}{3}\)
\(C=5-\left(2x-1\right)^4\)
Ta có: \(\left(2x-1\right)^4\ge0\forall x\Rightarrow-\left(2x-1\right)^4\le0\forall x\Rightarrow5-\left(2x-1\right)^4\le5\Rightarrow C\le5\)
\(C_{max}=5\Leftrightarrow x=\dfrac{1}{2}\)
\(D=-3\left(x-3\right)^2-\left(y-1\right)^2-2021\)
Ta có: \(\left\{{}\begin{matrix}-3\left(x-3\right)^2\le0\forall x\\-\left(y-1\right)^2\le0\forall y\end{matrix}\right.\Rightarrow-3\left(x-3\right)^2-\left(y-1\right)^2\le0\forall x,y\Rightarrow-3\left(x-3\right)^2-\left(y-1\right)^2-2021\le-2021\Rightarrow D\le-2021\)
\(D_{max}=-2021\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
\(E=-\left|x^2-1\right|-\left(x-1\right)^2-y^2-2020\)
\(=-\left|\left(x-1\right)\left(x+1\right)\right|-\left(x-1\right)^2-y^2-2020\)
Ta có: \(\left\{{}\begin{matrix}\left|\left(x-1\right)\left(x+1\right)\right|\ge0\forall x\Rightarrow-\left|\left(x-1\right)\left(x+1\right)\right|\le0\\\left(x-1\right)^2\ge0\forall x\Rightarrow-\left(x-1\right)^2\le0\\y^2\ge0\Rightarrow-y^2\le0\end{matrix}\right.\Rightarrow E\le-2020\)
\(E_{max}=-2020\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
Tìm giá trị nhỏ nhât và Lớn nhất của biểu thức \(M=\frac{x+1}{x^2+x+1}\)
Lời giải:
$M=\frac{x+1}{x^2+x+1}$
$\Leftrightarrow M(x^2+x+1)=x+1$
$\Leftrightarrow Mx^2+x(M-1)+(M-1)=0(*)$
Vì $M$ tồn tại PT $(*)$ luôn có nghiệm.
$\Leftrightarrow \Delta=(M-1)^2-4M(M-1)\geq 0$
$\Leftrightarrow (M-1)(M-1-4M)\geq 0$
$\Leftrightarrow (M-1)(-1-3M)\geq 0$
$\Leftrightarrow (M-1)(3M+1)\leq 0$
$\Leftrightarrow \frac{-1}{3}\leq M\leq 1$
Vậy $M_{\min}=\frac{-1}{3}; M_{\max}=1$
A=(x^2-3)/(2+x)
biểu thức A có giá trị lớn nhất hay nhỏ nhât.
tìm giá trị đó
các bạn giải nhanh giùm mình nha
thanks
Tìm giá trị lớn nhất hoặc nhỏ nhất của đa thức
Lời giải:
$B=5x^2+2x-3=5(x^2+\frac{2}{5}x+\frac{1}{5^2})-\frac{16}{5}$
$=5(x+\frac{1}{5})^2-\frac{16}{5}$
$\geq 5.0-\frac{16}{5}=\frac{-16}{5}$
Vậy GTNN của $B$ là $\frac{-16}{5}$. Giá trị này đạt tại $x+\frac{1}{5}=0\Leftrightarrow x=-\frac{1}{5}$
---------------------------------
$C=-9x^2+5x+1=1-(9x^2-5x)$
$=\frac{61}{36}-[(3x)^2-2.3x.\frac{5}{6}+(\frac{5}{6})^2]$
$=\frac{61}{36}-(3x-\frac{5}{6})^2$
$\leq \frac{61}{36}$
Vậy gtln của $C$ là $\frac{61}{36}$. Giá trị này đạt tại $3x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{18}$
-----------------------
$D=16x^2-8x+12=(4x)^2-2.4x.1+1+11$
$=(4x-1)^2+11\geq 0+11=11$
Vậy gtnn của $D$ là $11$. Giá trị này đạt tại $4x-1=0\Leftrightarrow x=\frac{1}{4}$