tìm số nguyên tố p sao cho p+2,p+8,p+16 là số nguyên tố
tìm số nguyên tố p sao cho p+2, p+8, p+16 đều là số nguyên tố
Tìm p là số nguyên tố sao cho p +8 ; p +16 cũng là số nguyên tố
xét p = 2 => p + 8 = 2 + 8 = 10 (loại)
xét p = 3 => p + 8 = 3 + 8 = 11 (tm)
p + 16 = 3 + 16 = 19 (tm)
xét p là snt và p > 3 => p = 3k + 1 hoặc p = 3k + 2
với p = 3k + 1 => p + 8 = 3k + 1 + 8 = 3k + 9 = 3(k + 3) (loại)
với p = 3k + 2 => p + 16 = 3k + 2 + 16 = 3k + 18 = 3(k + 6) (loại)
vậy p = 3
refer
xét p = 2 => p + 8 = 2 + 8 = 10 (loại)
xét p = 3 => p + 8 = 3 + 8 = 11 (tm)
p + 16 = 3 + 16 = 19 (tm)
xét p là snt và p > 3 => p = 3k + 1 hoặc p = 3k + 2
với p = 3k + 1 => p + 8 = 3k + 1 + 8 = 3k + 9 = 3(k + 3) (loại)
với p = 3k + 2 => p + 16 = 3k + 2 + 16 = 3k + 18 = 3(k + 6) (loại)
vậy p = 3
refer
xét p = 2 => p + 8 = 2 + 8 = 10 (loại)
xét p = 3 => p + 8 = 3 + 8 = 11 (tm)
p + 16 = 3 + 16 = 19 (tm)
xét p là snt và p > 3 => p = 3k + 1 hoặc p = 3k + 2
với p = 3k + 1 => p + 8 = 3k + 1 + 8 = 3k + 9 = 3(k + 3) (loại)
với p = 3k + 2 => p + 16 = 3k + 2 + 16 = 3k + 18 = 3(k + 6) (loại)
vậy p = 3
Tìm số nguyên tố p sao cho p + 2, p + 8, p + 14., p + 16 đều là các số nguyên tố.
tìm số nguyên tố p sao cho p+2; p+6; p+8; p+16 đều là các số nguyên tố
Tìm số nguyên tố p sao cho p+2; p+6; p+8; p+14 đều là các số nguyên tố
Tìm số nguyên tố p sao cho p+8 và p+16 đều là các số nguyên tố
Trường hợp 1: p=3
=> p+8=11 và p+16=19(nhận)
Trường hợp 2: p=3k+1
=>p+8=3k+9(loại)
Trường hợp 3: p=3k+2
=>p+16=3k+18(loại)
Tìm số nguyên tố p sao cho p + 8 và p + 16 đều là các số nguyên tố.
tìm số nguyên tố p sao cho p+4, p+8 cũng là số nguyên tố
tìm số nguyên tố p sao cho p+4, p+6, p+10, p+12, p+16
phàn dưới mik chép thiếu nha, đề bài đầy đủ là
tìm số nguyên tố p sao cho p+4, p+6, p+10, p+12, p+16 cũng là số nguyên tố
Theo ý nghĩ của mình nha chứ mình chưa biết có đúng hay không?
p = 3
Tìm số nguyên tố P sao cho:P+2,P+8,P+16 đều là số nguyên tố
vì p là số nguyên tố => p thuộc { 2; 3; 5; 7; 11; ......}
+) Với p = 2 => p + 2 = 2 + 2 (hợp số) -> loại
+) Với p = 3 => p + 2 = 3 + 2 = 5 (số nguyên tố)
p + 8 = 3 + 8 = 11 (số ngto)
p + 16 = 3 + 16 = 19 (thỏa mãn)
Nếu p > 3 thì p có 2 dạng : p = 3k + 1; 3k + 2
+) p = 3k + 1 => p + 2 = 3k + 1 + 2 = 3k + 3 chiia hết cho 3 (hợp số)
+) p = 3k + 2 => p + 16 = 3k + 2 + 16 = 3k + 18 chia hết cho 3 (hợp số)
Vậy p = 3