Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Vương Phú
Xem chi tiết
Trên con đường thành côn...
9 tháng 10 2021 lúc 11:12

Đặt \(A=x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)

\(\Leftrightarrow A=x+y+z+\dfrac{9}{9x}+\dfrac{9}{9y}+\dfrac{9}{9z}\)

\(\Leftrightarrow A=x+y+z+\dfrac{1}{9x}+\dfrac{8}{9x}+\dfrac{1}{9y}+\dfrac{8}{9y}+\dfrac{1}{9z}+\dfrac{8}{9z}\)

\(\Leftrightarrow A=\left(x+\dfrac{1}{9x}\right)+\left(y+\dfrac{1}{9y}\right)+\left(z+\dfrac{1}{9z}\right)+\left(\dfrac{8}{9x}+\dfrac{8}{9y}+\dfrac{8}{9z}\right)\)

\(\Leftrightarrow A=\left(x+\dfrac{1}{9x}\right)+\left(y+\dfrac{1}{9y}\right)+\left(z+\dfrac{1}{9z}\right)+\dfrac{8}{9}.\left(\dfrac{1^2}{x}+\dfrac{1^2}{y}+\dfrac{1^2}{z}\right)\)

\(\Rightarrow A\ge2\sqrt{x.\dfrac{1}{9x}}+2\sqrt{y.\dfrac{1}{9y}}+2\sqrt{z.\dfrac{1}{9z}}+\dfrac{8}{9}.\dfrac{\left(1+1+1\right)^2}{x+y+z}\)

\(\Rightarrow A\ge2\sqrt{\dfrac{1}{9}}+2\sqrt{\dfrac{1}{9}}+2\sqrt{\dfrac{1}{9}}+\dfrac{8}{9}.\dfrac{3^2}{1}\)

\(\Rightarrow A\ge2.\dfrac{1}{3}.3+8=2+8=10\)

Vậy ta có BĐT cần chứng minh.

Dấu\("="\) xảy ra\(\Leftrightarrow x=y=z=\dfrac{1}{3}\)

 

Linh Nguyễn
Xem chi tiết
Nguyễn Thị Yến Nhi
26 tháng 11 2016 lúc 21:56

bạn cảm ơn ai vay có bn ấy có giup bn làm đau

Tran Thi Hue
26 tháng 11 2016 lúc 21:20

mk chua hok den nen ko co bit lam

Linh Nguyễn
26 tháng 11 2016 lúc 21:23

cảm ơn b nhé

Linh Nguyễn
Xem chi tiết
Mon SLVO
2 tháng 1 2017 lúc 18:31

b1:

x-y=5->x=y+5

->x-3y/5-2y=y+5-3y/5-2y=5-2y5-2y=1

->đpcm

nguyễn luân
Xem chi tiết
Bùi Quỳnh Như
Xem chi tiết
Unirverse Sky
16 tháng 11 2021 lúc 8:26

) Thay f(-2) vào hàm số ta có :

y=f(-2)=(-2).(-2)+3=7

Thay f(-1) vào hàm số ta có :

y=f(-1)=(-2).(-1)+3=5

Thay f(0) vào hàm số ta có :

y=f(0)=(-2).0+3=1

Thay f(-1/2) vào hàm số ta có :

y=f(-1/2)=(-2).(-1/2)+3=4

Thay f(1/2) vào hàm số ta có :

y=f(1/2)=(-2).1/2+3=2

b) Thay g(-1) vào hàm số ta có :

y=g(-1)=(-1)2-1=0

Thay g(0) vào hàm số ta có :

y=g(0)=02-1=-1

Thay g(1) vào hàm số ta có :

y=g(1)=12-1=0

Thay g(2) vào hàm số ta có :

y=g(2)=22-1=3

Khách vãng lai đã xóa
VUX NA
Xem chi tiết
Edogawa Conan
4 tháng 9 2021 lúc 20:03

Ta có: \(\dfrac{1}{\sqrt{x}}+\dfrac{27}{\sqrt{3y}}=\dfrac{1}{\sqrt{x}}+\dfrac{81}{3\sqrt{3y}}\ge\dfrac{\left(1+9\right)^2}{\sqrt{x}+3\sqrt{3y}}=\dfrac{100}{\sqrt{x}+3\sqrt{3y}}\) (1)

Áp dụng BĐT của Cô-si ta có:

    \(\sqrt{x}=\sqrt{1.x}\le\dfrac{1+x}{2};3\sqrt{3y}\le\dfrac{9+3y}{2}\)

\(\Rightarrow\left(1\right)\ge\dfrac{100}{\dfrac{1+x}{2}+\dfrac{9+3y}{2}}=\dfrac{100}{\dfrac{10+x+3y}{2}}\ge\dfrac{100}{\dfrac{10+10}{2}}=\dfrac{100}{10}=10\)

Dấu "=" xảy ra ⇔ x=1;y=3

Nguyễn Trang
Xem chi tiết
Hi Ngo
Xem chi tiết
Trần Anh tuấn
Xem chi tiết
Thắng Nguyễn
27 tháng 5 2018 lúc 22:07

\(VT=6\left(x^2+y^2+z^2\right)+10\left(xy+yz+xz\right)+2\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)

\(=6\left(x+y+z\right)^2-2\left(xy+yz+xz\right)+2\frac{9}{2x+y+z+x+2y+z+x+y+2z}\)

\(\ge6\left(x+y+z\right)^2-2\frac{\left(x+y+z\right)^2}{3}+2\frac{9}{4\left(x+y+z\right)}\)

\(=\: 6\cdot\left(\frac{3}{4}\right)^2-2\cdot\frac{\left(\frac{3}{4}\right)^2}{3}+2\cdot\frac{9}{4\cdot\frac{3}{4}}=9\)