Cho các số hữu tỉ x và y tùy ý. Chứng minh rằng:
a) Nếu x>y thì x-y>0
b) ngược lại, nếu x-y>0 thì x>y
Chứng minh rằng
Nếu (1-x)2+(x-y)2+(y-z)2=0 thì x=y=z=1
Cho x, y là các số hữu tỉ. Chứng minh rằng:
nếu x.y=0 thì x=0 hoặc y=0.
Áp dụng: Tìm những giá trị của a, biết:
(2a-3)\(\left(\frac{3}{4}a+1\right)=0\)
Cho A = (x+1).(y+1),trong đó: x.y = 1 (x>0, y>0). Chứng minh rằng: A ≥ 4
Cho các số hữu tỉ tùy ý x,y,z. Chứng minh rằng:
nếu x = y thì x+z=y+z.
Ngược lại nếu x+z=y+z thì x=y
Bài 1: Cho 2 số hữu tỉ x và y trái dấu, không đối nhau thỏa mãn đẳng thức: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x+y}\)
Bài 2:Cho 4 số nguyên dương a, b, c,d thỏa mãn \(\dfrac{1}{c}=\dfrac{1}{2}.\left(\dfrac{1}{b}+\dfrac{1}{d}\right)\), đồng thời b là trung bình cộng của a và c. Chứng minh rằng 4 số đó lập thành 1 tỉ lệ thức
Bài 3:
a) Chứng minh rằng nếu 2.(x+y) = 5.(y + z) = 2.(z +x) thì \(\dfrac{x-y}{4}=\dfrac{y-z}{5}\)
b) Cho p là tích của 2016 số nguyên tố đầu tiên. Chứng minh rằng p - 1 và p + 1 không là số chính phương
Bài 1: Cho tỉ lệ thức
Tính tỉ số
Bài 2: a, Tìm x,y,z biết:
b, Cho
Chứng minh rằng:
Bài 3: a, Cho
Chứng minh rằng:
b, Chứng minh rằng nếu thì
Cho a+b+c=a2+b2+-c2=1.Và x:y:z=a:b:c
Chứng minh rằng (x+y+z)2=x2+y2+z2
Cho hàm số f(x) = \(\frac{100^x}{100^x+10}\) . Chứng minh rằng nếu a và b là số thỏa mãn a+b=1 thì f(a)+f(b)=1