Ta có: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\Rightarrow\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\)
\(\Rightarrow\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\left(x+y+z\right)^2\left(1\right)\)
Lại áp dụng tính chất của dãy tỉ số = nhau có:
\(\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\left(2\right)\)
Từ (1) và (2) => (x + y + z)2 = x2 + y2 + z2 (đpcm)